Depolymerization and Functionalization of Super Engineering Plastics
REVIEW|Updated:2025-07-14
|
Depolymerization and Functionalization of Super Engineering Plastics
Chinese Journal of Polymer ScienceVol. 43, Issue 6, Pages: 876-886(2025)
Affiliations:
a.Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
b.Hainan Institute of East China Normal University, State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
c.State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
Gu, B.; Huang, R.; Zhao, Y.; Jiang, X. Depolymerization and functionalization of super engineering plastics. Chinese J. Polym. Sci. 2025, 43, 876–886
Boning Gu, Rui Huang, Yinsong Zhao, et al. Depolymerization and Functionalization of Super Engineering Plastics[J]. Chinese journal of polymer science, 2025, 43(6): 876-886.
Gu, B.; Huang, R.; Zhao, Y.; Jiang, X. Depolymerization and functionalization of super engineering plastics. Chinese J. Polym. Sci. 2025, 43, 876–886 DOI: 10.1007/s10118-024-3226-1.
Boning Gu, Rui Huang, Yinsong Zhao, et al. Depolymerization and Functionalization of Super Engineering Plastics[J]. Chinese journal of polymer science, 2025, 43(6): 876-886. DOI: 10.1007/s10118-024-3226-1.
Depolymerization and Functionalization of Super Engineering Plastics
the latest achievements in the depolymerization and functionalization of super engineering plastics into valuable monomers were summarized
especially for PPS
sulfone-containing poly(arylene ether)s
and PEEK. The designs and developments of innovative and more sustainable strategies for the depolymerization of super engineering plastics are highly desirable.
Abstract
Chemical recycling/upcycling of plastics has emerged as one of the most promising strategies for the plastic circular economy
enabling the depolymerization and functionalization of plastics into valuable monomers and chemicals. However
studies on the depolymerization and functionalization of challenging super engineering plastics have remained in early stage and underexplored. In this review
we would like to discuss the representative accomplishments and mechanism insights on chemical protocols achieved in depolymerization of super engineering plastics
especially for poly(phenylene sulfide) (PPS)
poly(aryl ether)s including poly(ether ether ketone) (PEEK)
polysulfone (PSU)
polyphenylsulfone (PPSU) and polyethersulfone (PES). We anticipate that this review will provide an overall perspective on the current status and future trends of this emerging field.
关键词
Keywords
references
Shea, J. J. Modern plastics handbook IEEE Electr. Insul. Mag . 2000, 16 , 52-53..
Fink, J. K. High Performance Polymers . 2 ed.; Elsevier , 2014 ..
Maul, J.; Frushour, B. G.; Kontoff, J. R.; Eichenauer, H.; Ott, K. H.; Schade, C., Polystyrene and Styrene Copolymers. In Ullmann's Encyclopedia of Industrial Chemistry , 2007 ..
Park, S. A.; Jeon, H.; Kim, H.; Shin, S. H.; Choy, S.; Hwang, D. S.; Koo, J. M.; Jegal, J.; Hwang, S. Y.; Park, J.; Oh, D. X. Sustainable and recyclable super engineering thermoplastic from biorenewable monomer. Nat. Commun. 2019 , 10 , 2601..
Dizman, C.; Tasdelen, M. A.; Yagci, Y. Recent advances in the preparation of functionalized polysulfones. Polym. Int. 2013 , 62 , 991−1007..
Thakur, S.; Chaudhary, J.; Sharma, B.; Verma, A.; Tamulevicius, S.; Thakur, V. K. Sustainability of bioplastics: Opportunities and challenges. Curr. Opin. Green Sustainable Chem. 2018 , 13 , 68−75..
Hinton, Z. R.; Talley, M. R.; Kots, P. A.; Le, A. V.; Zhang, T.; Mackay, M. E.; Kunjapur, A. M.; Bai, P.; Vlachos, D. G.; Watson, M. P.; Berg, M. C.; Epps, T. H.; Korley, L. T. J. Innovations toward the valorization of plastics waste. Annu. Rev. Mater. Res. 2022 , 52 , 249−280..
Sheldon, R. A.; Norton, M. Green chemistry and the plastic pollution challenge: towards a circular economy. Green Chem. 2020 , 22 , 6310−6322..
Shen, M.; Huang, W.; Chen, M.; Song, B.; Zeng, G.; Zhang, Y. (Micro)plastic crisis: un-ignorable contribution to global greenhouse gas emissions and climate change. J. Cleaner Prod. 2020 , 254 , 120138..
Pathak, P.; Sharma, S.; Ramakrishna, S. Circular transformation in plastic management lessens the carbon footprint of the plastic industry. Mater. Today Sustainability 2023 , 22 , 100365..
Rahate, A. S.; Nemade, K. R.; Waghuley, S. A. Polyphenylene sulfide (PPS): state of the art and applications. Rev. Chem. Eng. 2013 , 29 , 471−489..
Global Polyphenylene Sulfide (PPS) Market from Global Information . https://www.giiresearch.com/report/kbv1450432-global-polyphenylene-sulfide-pps-market-size-share.html (accessed 31 July 2024).
Yu, Z.; Miao, G.; Wu, Q.; Chen, Y. Synthesis of thiol- and carboxyl-terminated poly( p -phenylene sulfide) oligomers. Macromol. Chem. Phys. 1996 , 197 , 4061−4068..
Wang, S. J.; Bian, S. G.; Yan, H.; Xiao, M.; Meng, Y. Z. Novel synthesis of macrocyclic disulfides from poly(phenylene sulfide) by depolymerization reaction. J. Appl. Polym. Sci. 2008 , 110 , 4049−4054..
Lian, Z.; Bhawal, B. N.; Yu, P.; Morandi, B. Palladium-catalyzed carbon-sulfur or carbon-phosphorus bond metathesis by reversible arylation. Science 2017 , 356 , 1059−1063..
Matsuyama, T.; Yatabe, T.; Yabe, T.; Yamaguchi, K. Direct thioether metathesis enabled by in situ formed Pd nanocluster catalysts. Catal. Sci. Technol. 2024 , 14 , 76−82..
Matsuyama, T.; Yatabe, T.; Yabe, T.; Yamaguchi, K. Heterogeneously catalyzed thioether metathesis by a supported Au–Pd alloy nanoparticle design based on Pd ensemble control. Chem. Sci . 2024 , 15 , 11884−11889..
Delcaillau, T.; Woenckhaus-Alvarez, A.; Morandi, B. Nickel-catalyzed cyanation of aryl thioethers. Org. Lett. 2021 , 23 , 7018−7022..
Nakajima, Y.; Minami, Y.; Matsuyama, N.; Matsuo, Y.; Tamura, M.; Sato, K. Catalytic reductive cleavage of poly(phenylene sulfide) using a hydrosilane. Synthesis 2021 , 53 , 3351−3354..
El-Hibri, M. J.; Shari, W. A. Polyarylethersulfones. In Handbook of Thermoplastics , Olagoke Olabisi , K. A., Ed. CRC Press, 2015 ..
Sulfone Polymers Market from Global Market Insights . https://www.gminsights.com/industry-analysis/sulfone-polymers-market (accessed 31 July, 2024).
Minami, Y.; Inagaki, Y.; Tsuyuki, T.; Sato, K.; Nakajima, Y. Hydroxylation-depolymerization of oxyphenylene-based super engineering plastics to regenerate arenols. JACS Au 2023 , 3 , 2323−2332..
Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. Visible-light photocatalysis: does it make a difference in organic synthesis. Angew. Chem. In. Ed. 2018 , 57 , 10034−10072..
Zhao, Y.; Li, D.; Jiang, X. Chemical upcycling of polyolefins through C−H functionalization. Eur. J. Org. Chem. 2023 , 26 , e202300664..
Meng, J.; Zhou, Y.; Li, D.; Jiang, X. Degradation of plastic wastes to commercial chemicals and monomers under visible light. Sci. Bull. 2023 , 68 , 1522−1530..
Minami, Y.; Honobe, R.; Inagaki, Y.; Sato, K.; Yoshida, M. Alcoholysis of oxyphenylene-based super engineering plastics mediated by readily available bases. Polym. J. 2024 , 56 , 369−377..
Minami, Y.; Imamura, S.; Matsuyama, N.; Nakajima, Y.; Yoshida, M. Catalytic thiolation-depolymerization-like decomposition of oxyphenylene-type super engineering plastics via selective carbon–oxygen main chain cleavages. Commun. Chem. 2024 , 7 , 37..
Thiruchitrambalam, M.; Bubesh Kumar, D.; Shanmugam, D.; Jawaid, M. A review on PEEK composites – manufacturing methods, properties and applications. Mater. Today:. Proc. 2020 , 33 , 1085−1092..
Minami, Y.; Matsuyama, N.; Takeichi, Y.; Watanabe, R.; Mathew, S.; Nakajima, Y. Depolymerization of robust polyetheretherketone to regenerate monomer units using sulfur reagents. Commun. Chem. 2023 , 6 , 14..
Backbone Degradable Polymers via Chain-growth Radical Polymerization
4-Bromophthalic Anhydride-based Polyesters as a Versatile Modified Platform
Related Author
Makoto Ouchi
Hai-Wang Lai
Xue-Si Chen
Xuan Pang
Chen-Yang Hu
Ming-Xin Niu
Guan-Hang Yu
Qing Han
Related Institution
Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-, Kyoto
Department of Chemistry, School of Sciences and Guangdong Provincial Key Laboratory of Mathematical and Neural Dynamical Systems, Great Bay University
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
School of Applied Chemistry and Engineering, University of Science and Technology of China
Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science Ministry of Education, School of Chemistry, Beijing Institute of Technology