FOLLOWUS
a.Department of Oncology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
b.College of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
c.Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
baolingguo@sina.com (B.L.G.)
chen_dong@zju.edu.cn (D.C.)
Published:2024-09,
Published Online:14 November 2024,
Received:19 July 2024,
Revised:28 August 2024,
Accepted:05 September 2024
Scan QR Code
Sun, D. P.; Xiao, Y.; Zheng, Y.; Zhang, A. X.; Guo, B. L.; Chen, D. Smart core-shell elastomer fibers with simultaneous resistance and color responses. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3232-3
Dong-Peng Sun, Yao Xiao, Yuan Zheng, et al. Smart Core-Shell Elastomer Fibers with Simultaneous Resistance and Color Responses. [J/OL]. Chinese Journal of Polymer Science, 2024,421-7.
Sun, D. P.; Xiao, Y.; Zheng, Y.; Zhang, A. X.; Guo, B. L.; Chen, D. Smart core-shell elastomer fibers with simultaneous resistance and color responses. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3232-3 DOI:
Dong-Peng Sun, Yao Xiao, Yuan Zheng, et al. Smart Core-Shell Elastomer Fibers with Simultaneous Resistance and Color Responses. [J/OL]. Chinese Journal of Polymer Science, 2024,421-7. DOI: 10.1007/s10118-024-3232-3.
Fibers with deformation-triggered responses are essential for smart textiles and wearable electronics. Here
smart core-shell elastomer fibers with a conductive core and a liquid crystal elastomer shell showing simultaneous resistance and color responses are designed and prepared. The conductive core is consisted of interconnected liquid metal nanodroplets dispersed in a polymer matrix and the elastomer shell is made of cholesteric liquid crystals. When stretched
the fiber resistance increases as the interconnected pathways of liquid metal nanodroplets along the fiber axis become narrower
and the selective reflection color from the fiber surface blueshifts since the cholesteric pitch decreases. The smart elastomer fibers could be woven into smart textiles and respond to various mechanical deformations
including stretching
bending
compression and twisting. The average resistance change is 51% under 100% strain and its variation is smaller than 4% over 500 cycles
showing remarkable fatigue resistance. The simultaneous resistance and color responses to mechanical deformations make the fibers attractive for broad applications
such as flexible electronics.
Elastomer fiberCore-shellSimultaneous responsesResistanceColor
Hartmann, F.; Baumgartner, M.; Kaltenbrunner, M. Becoming sustainable, the new frontier in soft robotics.Adv. Mater.2021,33, 2004413..
Kim, D. C.; Shim, H. J.; Lee, W.; Koo, J. H.; Kim, D. H. Material-based approaches for the fabrication of stretchable electronics.Adv. Mater.2020,32, 1902743..
Mackanic, D. G.; Kao, M.; Bao, Z. Enabling deformable and stretchable batteries.Adv. Energy Mater.2020,10, 2001424..
Tan, Y. J.; Godaba, H.; Chen, G.; Tan, S. T. M.; Wan, G.; Li, G.; Lee, P. M.; Cai, Y.; Li, S.; Shepherd, R. F.; Ho, J. S.; Tee, B. C. K. A transparent, self-healing and high-κdielectric for low-field-emission stretchable optoelectronics.Nat. Mater.2020,19, 182−188..
Lee, Y. Y.; Kang, H. Y.; Gwon, S. H.; Choi, G. M.; Lim, S. M.; Sun, J. Y.; Joo, Y. C. A strain-insensitive stretchable electronic conductor: PEDOT:PSS/acrylamide organogels.Adv. Mater.2016,28, 1636−1643..
Zhang, Z.; Deng, J.; Li, X.; Yang, Z.; He, S.; Chen, X.; Guan, G.; Ren, J.; Peng, H. Superelastic supercapacitors with high performances during stretching.Adv. Mater.2015,27, 356−362..
Xiao, Y.; Yang, Z.; Guo, B.; Wu, B.; Liu, R.; Zhang, S.; Zhao, P.; Ruan, J.; Lu, X.; Liu, K.; Chen, D. Strong and tough biofibers designed by dual crosslinking for sutures.Adv. Funct. Mater.2024,34, 2313131..
Xiao, Y.; Yang, C.; Guo, B.; Zhai, X.; Lao, S.; Zhao, P.; Ruan, J.; Lu, X.; Liu, K.; Chen, D. Bioinspired strong and tough organic-inorganic hybrid fibers.Small Struct.2023,4, 2300080..
Liu, Z.; Qi, D.; Hu, G.; Wang, H.; Jiang, Y.; Chen, G.; Luo, Y.; Loh, X. J.; Liedberg, B.; Chen, X. Surface strain redistribution on structured microfibers to enhance sensitivity of fiber-shaped stretchable strain sensors.Adv. Mater.2018,30, 1704229..
Lee, J.; Shin, S.; Lee, S.; Song, J.; Kang, S.; Han, H.; Kim, S.; Kim, S.; Seo, J.; Kim, D.; Lee, T. Highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics.ACS Nano2018,12, 4259−4268..
Seyedin, S.; Uzun, S.; Levitt, A.; Anasori, B.; Dion, G.; Gogotsi, Y.; Razal, J. M. Mxene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles.Adv. Funct. Mater.2020,30, 1910504..
Gao, Y.; Guo, F.; Cao, P.; Liu, J.; Li, D.; Wu, J.; Wang, N.; Su, Y.; Zhao, Y. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor.ACS Nano2020,14, 3442−3450..
Sun, D.; Zheng, L.; Xu, X.; Du, K.; An, Z.; Zhou, X.; Chen, L.; Zhu, J.; Chen, D. Multi-functional stimuli-responsive biomimetic flower assembled from clce and mof-based pedals.Chinese Chem. Lett.2023,34, 107208..
Ju, M.; Wu, B.; Sun, S.; Wu, P. Redox-active iron-citrate complex regulated robust coating-free hydrogel microfiber net with high environmental tolerance and sensitivity.Adv. Funct. Mater.2020,30, 1910387..
Shuai, L.; Guo, Z. H.; Zhang, P.; Wan, J.; Pu, X.; Wang, Z. L. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles.Nano Energy2020,78, 105389..
Sheng, J.; Wu, J.; Yin, X.; Sun, Z.; Wang, X.; Zhang, J.; Tang, J.; Ji, Y.; Song, J.; Wei, X.; Wang, L.; Zhao, Y.; Zhang, H.; Li, T.; Zhang, Q.; Bai, X.; Chen, L.; Chen, D.; Liang, T. Synergetic treatment of oxygen microcapsules and lenvatinib for enhanced therapy of hcc by alleviating hypoxia condition and activating anti-tumor immunity.Chinese Chem. Lett.2023,34, 107738..
Chen, L.; Xiao, Y.; Zhang, Z.; Zhao, C.-X.; Guo, B.; Ye, F.; Chen, D. Porous ultrathin-shell microcapsules designed by microfluidics for selective permeation and stimuli-triggered release.Front. Chem. Sci.2022,16, 1643−1650..
Cao, X.; Ye, C.; Cao, L.; Shan, Y.; Ren, J.; Ling, S. Biomimetic spun silk ionotronic fibers for intelligent discrimination of motions and tactile stimuli.Adv. Mater.2023,35, 2300447..
Qi, X.; Liu, Y.; Yu, L.; Yu, Z.; Chen, L.; Li, X.; Xia, Y. Versatile liquid metal/alginate composite fibers with enhanced flame retardancy and triboelectric performance for smart wearable textiles.Adv. Sci.2023,10, 2303406..
Huang, J.; Li, J.; Xu, X.; Hua, L.; Lu, Z. In situ loading of polypyrrole onto aramid nanofiber and carbon nanotube aerogel fibers as physiology and motion sensors.ACS Nano2022,16, 8161−8171..
Yang, L.; Pan, L.; Xiang, H.; Fei, X.; Zhu, M. Organic-inorganic hybrid conductive network to enhance the electrical conductivity of graphene-hybridized polymeric fibers.Chem. Mater.2022,34, 2049−2058..
Li, X.; Yang, Y.; Valenzuela, C.; Zhang, X.; Xue, P.; Liu, Y.; Liu, C.; Wang, L. Mechanochromic and conductive chiral nematic nanostructured film for bioinspired ionic skins.ACS Nano2023,17, 12829−12841..
Zhang, X.; Yang, Y.; Xue, P.; Valenzuela, C.; Chen, Y.; Yang, X.; Wang, L.; Feng, W. Three-dimensional electrochromic soft photonic crystals based on MXene-integrated blue phase liquid crystals for bioinspired visible and infrared camouflage.Angew. Chem. Int. Ed.2022,61, e202211030..
Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, M.; Bae, S. Y. J. N. N. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics.Nat. Nanotechnol.2018,13, 1048−1056..
Yun, G.; Tang, S.-Y.; Sun, S.; Yuan, D.; Zhao, Q.; Deng, L.; Yan, S.; Du, H.; Dickey, M. D.; Li, W. Liquid metal-filled magnetorheological elastomer with positive piezoconductivity.Nat. Commun.2019,10, 1300..
Zhang, S.; Chen, Y.; Liu, H.; Wang, Z.; Ling, H.; Wang, C.; Ni, J.; Çelebi-Saltik, B.; Wang, X.; Meng, X. J. A. M. Room-temperature-formed PEDOT:PSS hydrogels enable injectable, soft, and healable organic bioelectronics.Adv. Mater.2020,32, 1904752..
Li, X.; Zou, R.; Liu, Z.; Mata, J.; Storer, B.; Chen, Y.; Qi, W.; Zhou, Z.; Zhang, P. J. n. F. E. Deciphering the superior thermoelectric property of post-treatment-free PEDOT:PSS/il hybrid by X-ray and neutron scattering characterization.Npj Flexible Electron.2022,6, 6..
Rivnay, J.; Inal, S.; Collins, B. A.; Sessolo, M.; Stavrinidou, E.; Strakosas, X.; Tassone, C.; Delongchamp, D. M.; Malliaras, G. G. J. N. C. Structural control of mixed ionic and electronic transport in conducting polymers.Nat. Commun.2016,7, 11287..
Li, F.; Xue, H.; Lin, X.; Zhao, H.; Zhang, T. J. A. A. M.; Interfaces wearable temperature sensor with high resolution for skin temperature monitoring.ACS Appl. Mater. Interfaces 2022 ,14, 43844-43852..
Kim, Y.; Lund, A.; Noh, H.; Hofmann, A. I.; Craighero, M.; Darabi, S.; Zokaei, S.; Park, J. I.; Yoon, M. H.; Müller, C. J. M. M. Engineering robust PEDOT:PSS wet-spun fibers for thermoelectric textiles.Macromol. Mater. Eng.2020,305, 1900749..
Yang, C.; Chen, L.; Zhang, R.; Chen, D.; Arriaga, L. R.; Weitz, D. A. Local high-density distributions of phospholipids induced by the nucleation and growth of smectic liquid crystals at the interface.Chinese Chem. Lett.2022,33, 3973−3976..
Shi, H.; Liu, C.; Jiang, Q.; Xu, J. J. A. E. M. Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review.Adv. Electron. Mater.2015,1, 1500017..
Yan, J.; Lu, Y.; Chen, G.; Yang, M.; Gu, Z. J. C. S. R. Advances in liquid metals for biomedical applications.Chem. Soc. Rev.2018,47, 2518−2533..
Wang, H.; Li, R.; Cao, Y.; Chen, S.; Yuan, B.; Zhu, X.; Cheng, J.; Duan, M.; Liu, J. J. A. F. M. Liquid metal fibers.Adv. Fiber Mater.2022,4, 987−1004..
Lin, R.; Kim, H. J.; Achavananthadith, S.; Xiong, Z.; Lee, J. K.; Kong, Y. L.; Ho, J. S. J. N. C. Digitally-embroidered liquid metal electronic textiles for wearable wireless systems.Nat. Commun.2022,13, 2190..
Yu, Y.; Guo, J.; Ma, B.; Zhang, D.; Zhao, Y. J. S. B. Liquid metal-integrated ultra-elastic conductive microfibers from microfluidics for wearable electronics.Sci. Bull.2020,65, 1752−1759..
Liu, H.; Xin, Y.; Lou, Y.; Peng, Y.; Wei, L.; Zhang, J. J. M. H. Liquid metal gradient fibers with reversible thermal programmability.Mater. Horiz.2020,7, 2141−2149..
Long, L.; Che, X.; Yao, P.; Zhang, X.; Wang, J.; Li, M.; Li, C. J. A. A. M. Interfaces Interfacial electrochemical polymerization for spinning liquid metals into core-shell wires.ACS Appl. Mater. Interfaces2022,14, 18690−18696..
Kim, , M.; Lim, H.; Ko, S. H. Liquid metal patterning and unique properties for next‐generation soft electronics. Adv. Sci. 2023, 10, 2205795.
Cooper, C. B.; Arutselvan, K.; Liu, Y.; Armstrong, D.; Lin, Y.; Khan, M. R.; Genzer, J.; Dickey, M. D. Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers.Adv. Funct. Mater.2017,27, 1605630..
Liu, Z. F.; Fang, S.; Moura, F. A.; Ding, J. N.; Jiang, N.; Di, J.; Zhang, M.; Lepró, X.; Galvão, D. S.; Haines, C. S.; Yuan, N. Y.; Yin, S. G.; Lee, D. W.; Wang, R.; Wang, H. Y.; Lv, W.; Dong, C.; Zhang, R. C.; Chen, M. J.; Yin, Q.; Chong, Y. T.; Zhang, R.; Wang, X.; Lima, M. D.; Ovalle-Robles, R.; Qian, D.; Lu, H.; Baughman, R. H. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles.Science2015,349, 400−404..
Zheng, L.; Zhu, M.; Wu, B.; Li, Z.; Sun, S.; Wu, P. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing.Sci. Adv.2021,7, eabg4041..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution