FOLLOWUS
a.Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 76001 Zlin, Czech Republic
b.The Centre of Polymer Systems, Tomas Bata University in Zlin, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
j1navratilova@utb.cz
Published:2024-09,
Published Online:07 November 2024,
Received:24 July 2024,
Revised:15 August 2024,
Accepted:07 September 2024
Scan QR Code
Gajzlerova, L.; Navratilova, J.; Polaskova, M.; Benicek, L.; Jaska, D.; Zenzingerova, S.; Cermak, R. Tailoring end-use properties of polypropylene through a combination of specific nucleation and long-chain branching. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3234-1
Lenka Gajzlerova, Jana Navratilova, Martina Polaskova, et al. Tailoring End-Use Properties of Polypropylene through a Combination of Specific Nucleation and Long-Chain Branching. [J/OL]. Chinese Journal of Polymer Science, 2024,421-9.
Gajzlerova, L.; Navratilova, J.; Polaskova, M.; Benicek, L.; Jaska, D.; Zenzingerova, S.; Cermak, R. Tailoring end-use properties of polypropylene through a combination of specific nucleation and long-chain branching. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3234-1 DOI:
Lenka Gajzlerova, Jana Navratilova, Martina Polaskova, et al. Tailoring End-Use Properties of Polypropylene through a Combination of Specific Nucleation and Long-Chain Branching. [J/OL]. Chinese Journal of Polymer Science, 2024,421-9. DOI: 10.1007/s10118-024-3234-1.
The present study presents an assessment of the interrelations between long-chain branching
specific nucleation
and end-use properties of polypropylene blends: blends of linear polypropylene (L-PP) and long-chain branched polypropylene (LCB-PP) modified by a specific
β
-nucleating agent (NA). Specimens with various LCB-PP compositions with and without NA were prepared under complex flow fields by injection molding. Wide-angle X-ray scattering was employed to capture the X-ray patterns of both the skin and core of the specimens
determining the overall crystallinity and amounts of individual polymorphs. The increasing content of LCB-PP and
γ
-phase
at the same time
in the blends is reflected in both increasing crystallinity and improved mechanical properties
namely
yield stress and Young’s modulus. On the other hand
the composition of the blends had no significant effect on the impact strength
except for nucleated L-PP. It has been demonstrated that adding a relatively small amount of LCB-PP is sufficient to modify the mechanical properties of linear polypropylene. Even a very small amount of LCB-PP in the L-PP suppressed the effectiveness of NA.
Polymeric blendLong-chain branched polypropylenePolymorphismMechanical property
Speranza, V.; De Santis, F.; Pantani, R. Effect of isothermal shear flow on morphology evolution of an isotactic polypropylene.Polymer2024,295, 126752..
Shirvanimoghaddam, K.; Balaji, K. V.; Yadav, R.; Zabihi, O.; Ahmadi, M.; Adetunji, P.; Naebe, M. Balancing the toughness and strength in polypropylene composites.Compos. B Eng.2021,223, 109121..
Gahleitner, M.; Mileva, D.; Androsch, R.; Gloger, D.; Tranchida, D.; Sandholzer, M.; Doshev, P. Crystallinity-based product design: utilizing the polymorphism of isotactic PP homo- and copolymers.Int. Polym. Process.2016,31, 618−627..
Padden, F. J.; Keith, H. D. Spherulitic crystallization in polypropylene.J. Appl. Phys.1959,30, 1479−1484..
Natta, G.; Corradini, P. Structure and properties of isotactic polypropylene.Lett. nuovo cimento.1960,15, 40−51..
Xu, X.; Li, X. P.; Jin, B. Q.; Sheng, Q.; Wang, T.; Zhang, J. Influence of morphology evolution on the mechanical properties of beta nucleated isotactic polypropylene in presence of polypropylene random copolymer.Polym. Test.2016,51, 13−19..
Lotz, B. A. Newεcrystal modification found in stereodefective isotactic polypropylene samples.Macromolecules2014,47, 7612−7624..
Yang, S. G Chen, Y. H.; Deng, B. W.; Lei, J.; Li, L.; Li, Z. M. Window of pressure and flow to produceβ-crystals in isotactic polypropylene mixed withβ-nucleating agent.Macromolecules2017,50, 4807−4816..
Zenzingerova, S.; Navratilova, J.; Gajzlerova, L.; Kudlacek, M.; Jaska, D.; Benicek, L.; Cermak, R. Polypropylene blends: impact of long chain-branched polypropylene on crystallization of linear polypropylene.Express Polym. Lett.2024,18, 921−930..
Chvatalova, L.; Navratilova, J.; Cermak, R.; Raab, M.; Obadal, M. Joint effects of molecular structure and processing history on specific nucleation of isotactic polypropylene.Macromolecules2009,42, 7413−7417..
Roozemond, P. C.; van Erp, T. B.; Peters, G. W. M. Flow-induced crystallization of isotactic polypropylene: modeling formation of multiple crystal phases and morphologies.Polymer2016,89, 69−80..
Karger-Kocsis, J.; Varga, J. Effects ofβ-αtransformation on the static and dynamic tensile behavior of isotactic polypropylene.J. Appl. Polym. Sci.1996,62, 291−300..
Wu, Ch-M.; Chen, M.; Karger-Kocsis, J. The role of metastability in the micromorphologic features of sheared isotactic polypropylene melts.Polymer1999,40, 4195−4203..
Somani, R. H.; Hsiao, B. S.; Nogales, A.; Srinivas, S.; Tsou, A. H.; Sics, I.; Balta-Calleja, F. J.; Ezquerra, T. A. Structure development during shear flow-induced crystallization of i-PP:in-situsmall-angle X-ray scattering study.Macromolecules2000,33, 9385−9394..
Gajzlerova, L.; Navratilova, J.; Ryzi, A.; Slabenakova, T.; Cermak, R. Joint effects of long-chain branching and specific nucleation on morphology and thermal properties of polypropylene blends.Express Polym. Lett.2020,14, 952−961..
Kotek, J.; Raab, M.; Baldrian, J.; Grellmann, W. The effect of specificβ-nucleation on morphology and mechanical behavior of isotactic polypropylene.J. Appl. Polym. Sci.2002,85, 1174−1184..
Obadal, M.; Cermak, R.; Baran, N.; Stoklasa, K.; Simonik, J. Impact strength ofβ-nucleated polypropylene.Int. Polym. Process.2004,19, 35−39..
Romankiewicz, A.; Sterzynski, T.; Brostow, W. Structural characterization ofα- andβ-nucleated isotactic polypropylene.Polym. Int.2004,53, 2086−2091..
Výchopňová, J.; Čermák, R.; Obadal, M.; Raab, M.; Verney, V.; Commereuc, S. The role of specific nucleation in polypropylene photodegradation.Polym. Degrad. Stabil.2007,92, 1763−1768..
Yang, S. G.; Zhang, Y.; Zhang, L. Q.; Zhou, D.; Wang, Y.; Lei,J.; Li, L.; Li, Z. M. Unexpected shear dependence of pressure-inducedγ-crystals in isotactic polypropylene.Polym. Chem.2015,6, 4588−4596..
Thomann, R.; Wang, C.; Kressler, J.; Mulhaupt, R. On theγ-phase of isotactic polypropylene.Macromolecules1996,29, 8425−8434..
Alamo, R. G.; Kim, M. H.; Galante, M. J.; Isasi, J. R.; Mandelkern, L. Structural and kinetic factors governing the formation of theγpolymorph of isotactic polypropylene.Macromolecules1999,32, 4050−4064..
Wang, Y.; Zhao, J.; Qu, M.; Guo, J.; Yang, S. G.; Lei, J.; Xu, J. Z.; Chen, Y. H.; Li, Z. M.; Hsiao, B. S. An unusual promotion ofγ-crystals in metallocene-made isotactic polypropylene from orientational relaxation and favorable temperature window induced by shear.Polymer.2018,134, 196−203..
Zhou, S.; Wang, W.; Xin, Z.; Zhao, S.; Shi, Y. Relationship between molecular structure, crystallization behavior, and mechanical properties of long chain branching polypropylene.J. Mater. Sci.2016,51, 5598−5608..
Gajzlerova, L.; Navratilova, J.; Polaskova, M.; Benicek, L, Cermak, R. The polymorphic composition of long-chain branched polypropylene processed by injection and compression molding.Express Polym. Lett.2023,17, 1031−1041..
Navratilova, J.; Gajzlerova, L.; Kovar, L.; Cermak, R. Long-chain branched polypropylene: crystallization under high pressure and polymorphic composition.J. Therm. Anal. Calorim.2021,143, 3377−3383..
Mendoza-Cedeno, S.; Embabi, M.; Chang, E.; Kweon, M. S.; Shivokhin, M.; Pehlert, G.; Lee, P. Influence of molecular weight on high- and low-expansion foam injection molding using linear polypropylene.Polymer2023,266, 125611..
Weng, W.; Hu, W.; Dekmerzian, A. H.; Ruff, C. J. Long chain branched isotactic polypropylene.Macromolecules2002,35, 3838−3843..
Langston, J. A.; Colby, R. H.; Chung, T. C. M.; Shimizu, F.; Suzuki, T.; Aoki, M. Synthesis and characterization of long chain branched isotactic polypropyleneviametallocene catalyst and T-reagent.Macromolecules2007,40, 2712−2720..
Auhl, D.; Stange, J.; Münstedt, H.; Krause, B.; Voigt, D.; Lederer, A.; Lappan, U.; Lunkwitz, K. Long-chain branched polypropylenes by electron beam irradiation and their rheological properties.Macromolecules2004,37, 9465−9472..
Wang, K.; Wang, S.; Wu, F.; Pang, Y.; Liu, W.; Zhai, W. A new strategy for preparation of long-chain branched polypropyleneviareactive extrusion with supercritical CO2designed for an improved foaming approach.J. Mater. Sci.2016,51, 2705−2715..
Tian, J.; Yu, W.; Zhou, C. Crystallization behaviors of linear and long chain branched polypropylene.J. Appl. Polym. Sci.2007,104, 3592−3600..
McCallum, T. J.; Kontopoulou, M.; Park, C. B.; Muliawan, E. B.; Hatzikiriakos, S. G. The rheological and physical properties of linear and branched polypropylene blends.Polym. Eng. Sci.2007,47, 1133−1140..
Nam, G. J.; Yoo, J. H.; Lee, J. W. Effect of long-chain branches of polypropylene on rheological properties and foam-extrusion performances.J. Appl. Polym. Sci.2005,96, 1793−1800..
Gotsis, A. D.; Zeevenhoven, B. L.; Hogt, A. H. The effect of long chain branching on the processability of polypropylene in thermoforming.Polym. Eng. Sci.2004,44, 973−982..
Cao, J.; Zheng, Y.; Lin, T. Synergistic toughening effect ofβ-nucleating agent and long chain branching on polypropylene random copolymer.Polym. Test.2016,55, 318−327..
Sun, H.; Zhao, Z.; Yang, Q.; Yang, L.; Wu, P. The morphological evolution andβ-crystal distribution of isotactic polypropylene with the assistance of a long chain branched structure at micro-injection molding condition.J. Polym. Res.2017,24, 75..
Rytöluoto, I.; Gitsas, A.; Pasanen, S.; Lahti, K. Effect of film structure and morphology on the dielectric breakdown characteristics of cast and biaxially oriented polypropylene films.Eur. Polym. J.2017,95, 606−624..
Obadal, M.; Čermák, R.; Stoklasa, K. Tailoring of three-phase crystalline systems in isotactic poly(propylene).Macromol. Rapid Commun.2005,26, 1253−1257..
Turner-Jones, A.; Aizlewood, J. M.; Beckett, D. R. Crystalline forms of isotactic polypropylene.Macromol. Chem. Phys.1964,75, 134−158..
Sauer, J. A.; Pae, K. D. Structure and thermal behavior of pressure-crystallized polypropylene.J. Appl. Phys.1968,39, 4959−4968..
Gajzlerova, L.; Navratilova, J.; Zenzingerova, S.; Jaska, D.; Benicek, L.; Kudlacek, M.; Cermak, R.; Obadal, M. On isotactic polypropylene annealing: Difference in final properties of neat andβ-nucleated polypropylene.Express Polym. Lett.2022,16, 453−464..
Varga, J.; Menzhárd, A. Effect of solubility and nucleating duality of n,n‘-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene.Macromolecules2007,40, 2422−2431..
Zenzingerova, S.; Kudlacek, M.; Navratilova, J.; Gajzlerova, L.; Jaska, D.; Benicek, L.; Cermak, R. The competition between self-seeding and specific nucleation in crystallization of long-chain branched polypropylene.Express Polym. Lett.2023,17, 1110−1120..
Slouf, M.; Pavlova, E.; Krejcikova, S.; Ostafinska, A.; Zhigunov, A.; Krzyzanek, V.; Sowinski, P.; Piorkowska, E. Relations between morphology and micromechanical properties of alpha, beta and gamma phases of iPP.Polym. Test.2018,67, 522−532..
Nitta, K.; Takashima, T. Tensile properties inβ-modified isotactic polypropylene. in:Polypropylene-polymerization and characterization of mechanical and thermal properties. Wang, W. Ed., London: IntechOpen; 2018 ..
Zhao, W.; Huang, Y.; Liao, X.; Yang, Q. The molecular structure characteristics of long chain branched polypropylene and its effects on non-isothermal crystallization and mechanical properties.Polymer2013,54, 1455−1462..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution