FOLLOWUS
Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education)/ Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science and Technology, Qingdao 266042, China
shaohf0826@msn.com (H.F.S.)
aihuahe@iccas.ac.cn (A.H.H.)
Published:2024-09,
Published Online:14 November 2024,
Received:16 August 2024,
Revised:13 September 2024,
Accepted:16 September 2024
Scan QR Code
Xia, P. C.; Shao, H. F.; He, A. H. Effect of cross-linking density of powdered rubber on gas barrier property and CO2 permselectivity of NR/BR composites. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3238-x
Peng-Cheng Xia, Hua-Feng Shao, Ai-Hua He. Effect of Cross-Linking Density of Powdered Rubber on Gas Barrier Property and CO2 Permselectivity of NR/BR Composites. [J/OL]. Chinese Journal of Polymer Science, 2024,421-12.
Xia, P. C.; Shao, H. F.; He, A. H. Effect of cross-linking density of powdered rubber on gas barrier property and CO2 permselectivity of NR/BR composites. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3238-x DOI:
Peng-Cheng Xia, Hua-Feng Shao, Ai-Hua He. Effect of Cross-Linking Density of Powdered Rubber on Gas Barrier Property and CO2 Permselectivity of NR/BR Composites. [J/OL]. Chinese Journal of Polymer Science, 2024,421-12. DOI: 10.1007/s10118-024-3238-x.
In this study
a novel cost-effective methodology was developed to enhance the gas barrier properties and permselectivity of unfilled natural rubber (NR)/polybutadiene rubber (BR) composites through the construction of a heterogeneous structure using pre-vulcanized powder rubber to replace traditional fillers. The matrix material is composed of a blend of NR and BR
which is widely used in tire manufacturing. By incorporating pre-vulcanized
trans
-1
4-poly(isoprene-
co
-butadiene) (TBIR) rubber powder (pVTPR) with different cross-linking densities and contents
significant improvements in the gas barrier properties and CO
2
permselectivity of the NR/BR/pVTPR composites were observed. The results indicated that compared to NR/BR/TBIR composites prepared through direct blending of NR
BR
and TBIR
the NR/BR/pVTPR composites exhibited markedly superior gas barrier properties. Increasing the cross-linking density of pVTPR resulted in progressive enhancement of the gas barrier properties of the NR/BR/pVTPR composite. For example
the addition of 20 phr pVTPR with a cross-linking d
ensity of 346 mol/m
3
resulted in a 79% improvement in the oxygen barrier property of NR/BR/pVTPR compared to NR/BR
achieving a value of 5.47×10
−14
cm
3
·cm·cm
−2
·s
−1
·Pa
−1
. Similarly
the nitrogen barrier property improved by 76% compared to NR/BR
reaching 2.4×10
−14
cm
3
·cm·cm
−2
·s
−1
·Pa
−1
which is 28 % higher than the conventional inner liner material brominated butyl rubber (BIIR
P
N2
=3.32×10
−14
cm
3
·cm·cm
−2
·s
−1
·Pa
−1
). Owing to its low cost
exceptional gas barrier properties
superior adhesion to various tire components
and co-vulcanization capabilities
the NR/BR/pVTPR composite has emerged as a promising alternative to butyl rubber in the inner liner of tires. Furthermore
by fine-tuning the cross-linking density of pVTPR
the high-gas-barrier NR/BR/pVTPR composites also demonstrated remarkable CO
2
permselectivity
with a CO
2
/N
2
selectivity of 61.4 and a CO
2
/O
2
selectivity of 26.12. This innovation provides a novel strategy for CO
2
capture and separation
with potential applications in future environmental and industrial processes. The multifunctional NR/BR/pVTPR composite
with its superior gas barrier properties and CO
2
permselectivity
is expected to contribute to the development of safer
greener
and more cost-effective transportation solutions.
Gas barrierCO2 separationCross-linking densityPowdered rubberInner liner
Zheng, L.; Jerrams, S.; Xu, Z.; Zhang, L.; Liu, L.; Wen, S. Enhanced gas barrier properties of graphene oxide/rubber composites with strong interfaces constructed by graphene oxide and sulfur.Chem. Eng. J.2020,383, 123100..
Zhang, C.; An, X.; Tang, Z.; Fang, S.; Guo, B.; Zhang, L.; Liu, F.; Liu, J.; Chen, Z. Creation of tortuosity in unfilled rubberviaheterogeneous cross-linking toward improved barrier property.Macromolecules2021,54, 11522−11532..
Yang, S.; Wu, H.; Li, C.; Xiong, Y.; Guo, S. Constructing oriented two-dimensional large-sized modified graphene oxide barrier walls in brominated butyl rubber to achieve excellent gas barrier properties.ACS Appl. Mater. Interfaces2020,12, 3976−3983..
Cao, R.; Zhao, X.; Zhao, X.; Wu, X.; Li, X.; Zhang, L. Bromination modification of butyl rubber and its structure, properties, and application.Ind. Eng. Chem. Res.2019,58, 16645−16653..
Hermenegildo, G.; Bischoff, E.; Mauler, R. S.; Giovanela, M.; Carli, L. N.; Crespo, J. S. Development of chlorobutyl rubber/natural rubber nanocomposites with montmorillonite for use in the inner liner of tubeless ride tires.J. Elastomers Plast.2016,49, 47−61..
Sushmitha, H.; Chanda, J.; Saha, A.; Ghosh, P.; Mukhopadhyay, R. Influence of organoclay dispersion on air retention and fatigue resistance of tyre inner liner compound.J. Appl. Polym. Sci.2021,138, 50419..
Ghosh, P.; Stocek, R.; Gehde, M.; Mukhopadhyay, R.; Krishnakumar, R. Investigation of fatigue crack growth characteristics of NR/BR blend based tyre tread compounds.Int. J. Fract.2014,188, 9−21..
Song, Y.; Lin, G.; Zhang, L.; Geng, C.; Li, Q.; Wang, H.; Liu, F.; Liang, Z.; Jing, Y.; Li, Y. Synergistic effect of hybrid montmorillonite materials on the wear resistance of natural rubber/butadiene rubber composites.J. Appl. Polym. Sci.2022,139, 52464..
Sulekha, P. B.; Joseph, R.; Manjooran, K. B. New oligomer-bound antioxidants in natural rubber/polybutadiene rubber and natural rubber/styrene-butadiene rubber blends.J. Appl. Polym. Sci.2004,93, 437−443..
Euchler, E.; Kratina, O.; Stoček, R.; Gehde, M. A study of correlation between crack initiation during dynamic wear process and fatigue crack growth of reinforced rubber materials.Conference Papers in Science2015,2015, 1−6..
Amin, A. F. M. S.; Lion, A.; Höfer, P. Effect of temperature history on the mechanical behaviour of a filler-reinforced NR/BR blend: literature review and critical experiments.ZAMM · Z. Angew. Math. Mech.2010,90, 347−369..
Kaliyathan, A. V.; Rane, A. V.; Huskic, M.; Kunaver, M.; Kalarikkal, N.; Rouxel, D.; Thomas, S. Carbon black distribution in natural rubber/butadiene rubber blend composites: distribution driven by morphology.Compos. Sci. Technol.2020,200, 108484..
Algaily, B.; Kaewsakul, W.; Sarkawi, S. S.; Kalkornsurapranee, E. A self-healing system based on ester crosslinks for carbon black-filled rubber compounds.J. Compos. Sci.2021,5, 70..
Bottazzo, J.; Guglielmi, M.; Polizzi, S.; Brusatin, G. Natural rubber/cis-1,4-polybutadiene nanocomposites: vulcanization behavior, mechanical properties, and thermal stability.Polym. Eng. Sci.2012,53, 671−678..
Madaeni, S. S.; Enayati, E.; Vatanpour, V. The influence of membrane formation parameters on structural morphology and performance of PES/PDMS composite membrane for gas separation.J. Appl. Polym. Sci.2011,122, 827−839..
Sadrzadeh, M.; Saljoughi, E.; Shahidi, K.; Mohammadi, T. Preparation and characterization of a composite PDMS membrane on CA support.Polym. Adv. Technol.2010,21, 568−577..
Cao, P. F.; Li, B.; Hong, T.; Xing, K.; Voylov, D. N.; Cheng, S.; Yin, P.; Kisliuk, A.; Mahurin, S. M.; Sokolov, A. P.; Saito, T. Robust and elastic polymer membranes with tunable properties for gas separation.ACS Appl. Mater. Interfaces2017,9, 26483−26491..
Rao, H.; Zhang, Z.; Song, C.; Qiao, T. Polydimethylsiloxane/liquid crystal cross-linked membranes: preparation, characterization and oxygen transport properties.React. Funct. Polym.2011,71, 537−543..
Dobre, T.; Pârvulescu, O. C.; Sanchez-Marcano, J.; Stoica, A.; Stroescu, M.; Iavorschi, G. Characterization of gas permeation through stretched polyisoprene membranes.Sep. Purif. Technol.2011,82, 202−209..
Huang, Z.; Wu, X.; Shi, Y.; Zhang, L. A novel interface agent for preparation of high gas barrier organic montmorillonite/brominated butyl rubber nanocomposites.Macromol. Mater. Eng.2022,308, 2200567..
Thuruthil Raju, A.; Dash, B.; Dey, P.; Nair, S.; Naskar, K. Evaluation of air permeability characteristics on the hybridization of carbon black with graphene nanoplatelets in bromobutyl rubber/epoxidized natural rubber composites for inner-liner applications.Polym. Adv. Technol.2020,31, 2390−2402..
Zhang, Y.; Liu, Q.; Zhang, S.; Zhang, Y.; Cheng, H. Gas barrier properties and mechanism of kaolin/styrene-butadiene rubber nanocomposites.Appl. Clay Sci.2015,111, 37−43..
Maria, H. J.; Thomas, M. G.; Morreale, M.; La Mantia, F. P.; Nzihou, A.; Joseph, K.; Rouxel, D.; Fernandes, S. C. M.; Kalarikkal, N.; Thomas, S. Gas barrier, rheological and mechanical properties of immiscible natural rubber/acrylonitrile butadiene rubber/organoclay (NR/NBR/Organoclay) blend nanocomposites.Materials2020,13, 2654..
Scherillo, G.; Lavorgna, M.; Buonocore, G. G.; Zhan, Y. H.; Xia, H. S.; Mensitieri, G.; Ambrosio, L. Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites.ACS Appl. Mater. Interfaces2014,6, 2230−4..
Wang, L.; Zhang, J.; Yang, G.; Sun, Y.; Liang, Y.; Wang, Y.; Li, C. Self-crosslinking of graphene oxide/natural rubber nanocomposite film under assistance of protein for enhancing gas barrier performance.Surf. Interfaces2021,26, 101359..
Wu, J.; Huang, G.; Li, H.; Wu, S.; Liu, Y.; Zheng, J. Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content.Polymer2013,54, 1930−1937..
Nielsen, L. E. Models for the permeability of filled polymer systems.J. Macromol. Sci. A1967,1, 929−942..
Chen, H.; Li, Y.; Wang, S.; Li, Y.; Zhou, Y. Highly ordered structured montmorillonite/brominated butyl rubber nanocomposites: dramatic enhancement of the gas barrier properties by an external magnetic field.J. Membr. Sci.2018,546, 22−30..
Liang, Y.; Cao, W.; Li, Z.; Wang, Y.; Wu, Y.; Zhang, L. A new strategy to improve the gas barrier property of isobutylene-isoprene rubber/clay nanocomposites.Polym. Test.2008,27, 270−276..
Zhao, F.; Bi, W.; Zhao, S. Influence of crosslink density on mechanical properties of natural rubber vulcanizates.J. Macromol. Sci. B2011,50, 1460−1469..
Chae, Y. K.; Kang, W. Y.; Jang, J. H.; Choi, S. S. A simple NMR method to measure crosslink density of natural rubber composite.Polym. Test.2010,29, 953−957..
Fang, S.; Li, F.; Liu, J.; Zhang, L.; Wang, D.; Liu, B.; Wu, S.; Tang, Z.; Guo, B. Rubber-reinforced rubbers toward the combination of high reinforcement and low energy loss.Nano Energy2021,83, 105822..
Wang, S.; Tang, Z.; Cen, W.; Zhang, C.; Guo, B. Creating molecular bridges across the interfaces in segregated composites toward improved conductive and mechanical properties.Compos. Sci. Technol.2022,222, 109377..
Zhang, C.; Tang, Z.; An, X.; Fang, S.; Wu, S.; Guo, B. Generic method to create segregated structures toward robust, flexible, highly conductive elastomer composites.ACS Appl. Mater. Interfaces2021,13, 24154−24163..
Brunetti, A.; Scura, F.; Barbieri, G.; Drioli, E. Membrane technologies for CO2separation.J. Membr. Sci.2010,359, 115−125..
Brunetti, A.; Drioli, E.; Lee, Y.M.; Barbieri, G. Engineering evaluation of CO2separation by membrane gas separation systems.J. Membr. Sci.2014,454, 305−315..
Liu, Y.; Li, N.; Cui, X.; Yan, W.; Su, J.; Jin, L. A review on the morphology and material properties of the gas separation membrane: molecular simulation.Membranes2022,12, 1274..
Mannan, H. A.; Mukhtar, H.; Murugesan, T.; Nasir, R.; Mohshim, D. F.; Mushtaq, A. Recent applications of polymer blends in gas separation membranes.Chem. Eng. Technol.2013,36, 1838−1846..
Grushevenko, E. A.; Borisov, I. L.; Volkov, A. V. High-selectivity polysiloxane membranes for gases and liquids separation (a review).Pet. Chem.2021,61, 959−976..
Wolińska-Grabczyk, A.; Jankowski, A. CO2/N2separation ability and structural characteristics of poly(butadiene-co-acrylonitrile)-based polyurethanes and hydrogenated nitrile rubbers.J. Appl. Polym. Sci.2011,122, 2690−2696..
Zhuang, G. L.; Wey, M. Y.; Tseng, H. H. A novel technique using reclaimed tire rubber for gas separation membranes.J. Membr. Sci.2016,520, 314−325..
Zhuang, G. L.; Tseng, H. H.; Wey, M. Y. Facile synthesis of CO2-selective membrane derived from butyl reclaimed rubber (BRR) for efficient CO2separation.J. CO2Util. 2018, 25,226-234..
Shao, H.; Guo, Q.; He, A. Strategy for the NR/BR blends with improved thermo-oxidative resistance.Polym. Degrad. Stabil.2021,191, 109665..
Shao, H.; Guo, Q.; He, A. Evolution of crosslinking networks structure and thermo-oxidative aging behavior of unfilled NR/BR blends with TBIR as extra functional compatibilizer.Polym. Test.2022,115, 107715..
Xia, P.; Shao, H.; He, A. Excellent oxygen barrier property of unfilled natural rubber/trans-butadiene-co-isoprene rubber vulcanizates under the synergistic effect of crosslinking density and crystallization.Polymers2024,16, 345..
Yan, N.; Buonocore, G.; Lavorgna, M.; Kaciulis, S.; Balijepalli, S. K.; Zhan, Y.; Xia, H.; Ambrosio, L. The role of reduced graphene oxide on chemical, mechanical and barrier properties of natural rubber composites.Compos. Sci. Technol.2014,102, 74−81..
A. Andrio, V. C., R.C. Reis-Nunes, M.L. López, E. Riande Influence of cellulose reinforcers on gas transport through natural rubber.J. Membr. Sci. 2000, 178,65-74..
Guo, Y.; Tian, H.; Li, X.; Han, J.; Ning, N.; Tian, M.; Zhang, L. Preparation of FKM/EFEP thermoplastic vulcanizate with excellent heat and oil resistance, gas barrier property and recyclability.Polymer2022,262, 125429..
Yuk, J. S.; Mo, E.; Kim, S.; Jeong, H.; Gwon, H.; Kim, N. K.; Kim, Y. W.; Shin, J. Thermoplastic superelastomers based on poly(isobutylene)-graft-poly(l-lactide) copolymers: enhanced thermal stability, tunable tensile strength, and gas barrier property.Macromolecules2020,53, 2503−2515..
Vohra, A.; Carmichael, R. S.; Carmichael, T. B. Developing the surface chemistry of transparent butyl rubber for impermeable stretchable electronics.Langmuir2016,32, 10206−10212..
Soney C. George, K. N. N. Sabu Thomas Permeation of nitrogen and oxygen gases through styrene-butadiene rubber, natural rubber and styrene-butadiene rubber/natural rubber blend membranes.Eur. Polym. J.2001,37, 183−191..
T. Johnson, S. T. Nitrogen/oxygen permeability of natural rubber, epoxidised natural rubber and natural rubber/epoxidised natural rubber blends.Polymer 1999, 40,3223–3228..
Cai, F.; You, G.;Zhao, X.; Hu, H.; Wu, S. The relationship between specific structure and gas permeability of bromobutyl rubber: a combination of experiments and molecular simulations.Macromol. Theory Simul.2019,28, 1900025..
Golzar, K.; Amjad-Iranagh, S.; Amani, M.; Modarress, H. Molecular simulation study of penetrant gas transport properties into the pure and nanosized silica particles filled polysulfone membranes.J. Membr. Sci.2014,451, 117−134..
Kloos, J.; Jansen, N.; Houben, M.; Casimiro, A.; Lub, J.; Borneman, Z.; Schenning, A.; Nijmeijer, K. On the order and orientation in liquid crystalline polymer membranes for gas separation.Chem. Mater.2021,33, 8323−8333..
Prykhodko, Y.; Martin, A.; Oulyadi, H.; Marais, S.; Fatyeyeva, K. Polymer EVA-OH membrane with improved water/gas separation performance: influence of VAc/VOH repeating units ratio on membrane physical chemical properties.J. Membr. Sci.2023,673, 121386..
Abadyan, M.; Kouchakzadeh, M. A.; Bagheri, R. Fracture toughness of a hybrid rubber modified epoxy. II. Effect of loading rate.J. Appl. Polym. Sci.2012,125, 2476−2483..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution