FOLLOWUS
a.School of Chemistry and Chemical Engineering, Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
b.School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
chm_leil@ujn.edu.cn (L.L)
chm_lih1@ujn.edu.cn (H.L.)
Published:2024-10,
Published Online:25 November 2024,
Received:04 September 2024,
Revised:22 September 2024,
Accepted:30 September 2024
Scan QR Code
Yang, W.; Yuan, L.; Gong, K.; Zhang, R. H.; Lei, L.; Li, H. Methyl groups pendant on triphenylmethane toward modulating thermal stability and dielectric properties of the crosslinkable fluorinated polyimide films with high transparency. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3243-0
Wen Yang, Liang Yuan, Kai Gong, et al. Methyl Groups Pendant on Triphenylmethane Toward Modulating Thermal Stability and Dielectric Properties of the Crosslinkable Fluorinated Polyimide Films with High Transparency. [J/OL]. Chinese Journal of Polymer Science, 2024,421-12.
Yang, W.; Yuan, L.; Gong, K.; Zhang, R. H.; Lei, L.; Li, H. Methyl groups pendant on triphenylmethane toward modulating thermal stability and dielectric properties of the crosslinkable fluorinated polyimide films with high transparency. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3243-0 DOI:
Wen Yang, Liang Yuan, Kai Gong, et al. Methyl Groups Pendant on Triphenylmethane Toward Modulating Thermal Stability and Dielectric Properties of the Crosslinkable Fluorinated Polyimide Films with High Transparency. [J/OL]. Chinese Journal of Polymer Science, 2024,421-12. DOI: 10.1007/s10118-024-3243-0.
It is urgent to develop high-performance polyimide (PI) films that simultaneously exhibit high transparency
exceptional thermal stability
mechanical robustness
and low dielectric to fulfil the requirements of flexible display technologies. Herein
a series of fluorinated polyimide films (FPIs) were fabricated by the condensation of 5
5′-(perfluoropropane-2
2-diyl) bis(isobenzofuran-1
3-dione) (6FDA) and the fluorinated triphenylmethane diamine monomer (EDA
MEDA and DMEDA) with heat-crosslinkable tetrafluorostyrene side groups
which was incorporated by different numbers of methyl groups pendant in the ortho position of amino groups. Subsequently
the FPI films underwent heating to produce crosslinking FPIs (C-FPIs) through the self-crosslinking of double bonds in the tetrafluorostyrene. The transparency
solvent resistance
thermal stability
mechanical robustness and dielectric properties of FPI and C-FPI films can be tuned by the number of methyl groups and crosslinking
which were deeply investigated by virtue of molecular dynamics (MD) simulations and density functional theory (DFT). As a result
all the films exhibited exceptional optically colorless and transparent
with transmittance in the visible region of 450−700 nm exceeding 79.9%
and the cut-off wavelengths (
λ
off
) were nearly 350 nm. The thermal decomposition temperatures at 5% weight loss (
T
d5%
) for all samples exceeded 504 °C. These films exhibited a wide range of tunable tensile strength (46.5–75.1 MPa). Significantly
they showed exceptional dielectric properties with the dielectric constant of 2.3–2.5 at full frequency (10
7
–20 Hz). This study not only highlights the relationship between the polymer molecular structure and properties
but
offer insights for balancing optical transparency
heat resistance and low dielectric constant in PI films.
Crosslinkable fluorinated polyimideMethyl groupTriphenylmethaneTransparencyThermal stabilityLow dielectric constant
Jiang, X.; Chen, K.; Li, C.; Long, Y.; Liu, S.; Chi, Z.; Xu, J.; Zhang, Y. Ultralow coefficient of thermal expansion and a high colorless transparent polyimide film realized through a reinforced hydrogen-bond network by In situ polymerization of aromatic polyamide in colorless polyimide.ACS Appl. Mater. Interfaces2023,15, 41793−41805..
Hong, J.; Cheng, P.; Guo, J.; Chen, W.; Li, Y.; Liu, J.; Zhu, Q.; Chen, J. The mechanism study of laser peeling of ultra-thin polyimide film from the transparent substrate.Surf. Interfaces2023,36, 102561..
Jun, J.; Lee, J. H.; Choi, H. J.; Moon, S.; Kim, I. D.; Lee, H. Fabrication of optically-functionalized colorless polyimidepatterns with high durability.Appl. Surf. Sci.2017,423, 881−886..
Kim, Y. N.; Lee, J.; Kim, Y. O.; Kim, J.; Han, H.; Jung, Y. C. Colorless polyimides with excellent optical transparency and self-healing properties based on multi-exchange dynamic network.Appl. Mater. Today2021,25, 101226..
Ahn, C.; Kim, T. Y.; Hong, P. H.; Choi, S.; Lee, Y. J.; Kwon, H.; Jeon, H.; Ko, D. W.; Park, I.; Han, H.; Hong, S. W. Highly transparent, colorless optical film with outstanding mechanical strength and folding reliability using mismatched charge-transfer complex intensification.Adv. Funct. Mater.2022,32, 2111040..
Cao, G.; Chen, X.; Deng, B.; Wang, S.; Zhang, Q. Color construction of polyimide fibers based on charge transfer complex regulation and swelling effect.Appl. Surf. Sci.2022,597, 153593..
Xiao, Y.; Lei, X.; Zhang, Z.; Chen, S.; Xiong, G.; Ma, X.; Zhang, Q. Carbazole-based polyimide membranes with hydrogen-bonding interactions for gas separation.Macromolecules2024,57, 5941−5957..
Chen, L.; Xu, Z.; Wang, F.; Duan, G.; Xu, W.; Zhang, G.; Yang, H.; Liu, J.; Jiang, S. A flame-retardant and transparent wood/polyimide composite with excellent mechanical strength.Compos. Commun.2020,20, 100355..
Vivod, S. L.; Meador, M. A. B.; Pugh, C.; Wilkosz, M.; Calomino, K.; McCorkle, L. Toward improved optical transparency of polyimide aerogels.ACS Appl. Mater. Interfaces2020,12, 8622−8633..
Abdulhamid, M. A.; Ma, X.; Ghanem, B. S.; Pinnau, I. Synthesis and characterization of organo-soluble polyimides derived from alicyclic dianhydrides and a dihydroxyl-functionalized spirobisindane diamine.ACS Appl. Polym. Mater.2019,1, 63−69..
Wei, S.; Wang, X.; Zhao, X.; Zhao, K.; Xu, L.; Chen, Y. Detection of pesticide residues on flexible and transparent fluorinated polyimide film based on surface-enhanced Raman spectroscopy technology.Anal. Chim. Acta2023,1283, 341958..
Yoon, T. W.; Park, H.; Lee, J.; Yoo, S.; Kim, Y. H.; Weon, B. M.; Kim, J.; Kim, Y. Y.; Kang, B. Controlling fluorination density of soluble polyimide gate dielectrics and its influence on organic crystal growth and device operational stability.ACS Appl. Mater. Interfaces2024,16, 24010−24020..
Peng, W. F.; Lei, H. Y.; Zhang, X. X.; Qiu, L. H.; Huang, M. J. Fluorine substitution effect on the material properties in transparent aromatic polyimides.Chinese J. Polym. Sci.2022,40, 781−788..
Cheng, Y.; Ji, Q.; Zhang, G.; Zhang, X.; Liu, Z.; Gong, H.; Zhang, Z. Synergistic enhancement of dielectric polymers through fluorine incorporation for improved energy storage, reduced loss, and enhanced processability.Adv. Funct. Mater. 2024, 2406219..
Qu, C.; Shan, L.; Zhang, G.; Sun, R. Preparation and dielectric properties research of a novel kind of intrinsic silane-containing polyimide.Polymer2023,285, 126361..
Park, S. J.; Cho, K. S.; Kim, S. H. A study on dielectric characteristics of fluorinated polyimide thin film.J. Colloid Interface Sci.2004,272, 384−390..
Liu, M.; Song, J.; Qin, H.; Qin, S.; Zhang, Y.; Xia, W.; Xiong, C.; Liu, F. Significant enhancement in dielectric properties of polyimide alloys through a two-phase interlocking structure.Adv. Funct. Mater.2024,34, 2313258..
She, Y. K.; Wang, S. X.; Liao, Q.; Lin, M. J. Transparent and highly organosoluble aromatic polyimides with twisted backbone and bulky side substituents for flexible substrate materials.J. Polym. Sci.2024,62, 1061−1073..
Sawada, R.; Ando, S. Enhancing optical, dielectric, and thermal properties of bio-based polyimides incorporating isomannide with a bent and sterically constrained conformation.J. Mater. Chem. C2023,11, 15053−15064..
Mahl, M.; Shoyama, K.; Krause, A. M.; Schmidt, D.; Würthner, F. Base-assisted imidization: a synthetic method for the introduction of bulky imide substituents to control packing and optical properties of naphthalene and perylene imides.Angew. Chem. Int. Ed.2020,59, 13401−13405..
Viggiano, R. P.; Williams, J. C.; Schiraldi, D. A.; Meador, M. A. B. Effect of bulky substituents in the polymer backbone on the properties of polyimide aerogels.ACS Appl. Mater. Interfaces2017,9, 8287−8296..
Fang, Y.; He, X.; Kang, J. C.; Wang, L.; Ding, T. M.; Lu, X.; Zhang, S. Y.; Lu, Q. Terphenyl-based colorless and heat-resistant polyimides with a controlled molecular structure using methyl side groups.Polym. Chem.2022,13, 5105−5115..
Chen, H.; Dai, F.; Wang, M.; Chen, C.; Qian, G.; Yu, Y. Homopolyimides containing both benzimidazole and benzoxazole with high Tg and low coefficient of thermal expansion.J. Polym. Sci.2021,59, 833−842..
Moghadam, F.; Lee, T. H.; Park, I.; Park, H. B. Thermally annealed polyimide-based mixed matrix membrane containing ZIF-67 decorated porous graphene oxide nanosheets with enhanced propylene/propane selectivity.J. Membr. Sci.2020,603, 118019..
Chen, C. K.; Lin, Y. C.; Hsu, L. C.;Ho, J. C.; Ueda, M.; Chen, W. C. High performance biomass-based polyimides for flexible electronic applications.ACS Sustainable Chem. Eng.2021,9, 3278−3288..
Zuo, H.; Chen, Y.; Qian, G.; Yao, F.; Li, H.; Dong, J.; Zhao, X.; Zhang, Q. Effect of simultaneously introduced bulky pendent group and amide unit on optical transparency and dimensional stability of polyimide film.Eur. Polym. J.2022,173, 111317..
Wu, Q.; Ma, X.; Zheng, F.; Lu, X.; Lu, Q. High performance transparent polyimides by controlling steric hindrance of methyl side groups.Eur. Polym. J.2019,120, 109235..
Rech, J. J.; Bauer, N.; Dirkes, D.; Kaplan, J.; Peng, Z.; Zhang, H.; Ye, L.; Liu, S.; Gao, F.; Ade, H.; You, W. The crucial role of end group planarity for fused-ring electron acceptors in organic solar cells.Mat. Chem. Front.2019,3, 1642−1652..
Hou, X.; Mao, Y.; Zhang, R.; Fang, D. Super-flexible polyimide nanofiber cross-linked polyimide aerogel membranes for high efficient flexible thermal protection.Chem. Eng. J.2021,417, 129341..
Yang, C.; Xu, W.; Nan, Y.; Wang, Y. Novel solvent-resistant nanofiltration membranes using MPD co-crosslinked polyimide for efficient desalination.J. Membr. Sci.2020,616, 118603..
Wang, Y.; Zhou, J.; Hou, J.; Chen, X.; Sun, J.; Fang, Q. High-performance polyimides with high tg and excellent dimensional stability at high temperature preparedviaa cooperative action of hydrogen-bond interaction and cross-linking reaction.ACS Appl. Polym. Mater.2019,1, 2099−2107..
Xie, T.; Pang, Y.; Fan, H.; Zhu, S.; Zhao, C.; Guan, S.; Yao, H. Controlling the microphase morphology and performance of cross-linked highly sulfonated polyimide membranes by varying the molecular structure and volume of the hydrophobic cross-linkable diamine monomers.J. Membr. Sci.2023,666, 121177..
Yao, H.; Song, N.; Shi, K.; Feng, S.; Zhu, S.; Zhang, Y.; Guan, S. Highly sulfonated co-polyimides containing hydrophobic cross-linked networks as proton exchange membranes.Polym. Chem.2016,7, 4728−4735..
Chen, S.; Sun, J.; Chen, W.; Ren, Y.; Wang, J.; Yang, Y. Molecular dynamics simulation of in situ polymerization: chain conformation transition.Macromolecules2024,57, 4842−4854..
Wang, S.; Jin, S.; Han, X.; Li, L.; Zhao, X.; Zhou, H.; Chen, C. Insights into the relationship between structure and properties of Spirobichroman-based polyimides: Effects of substituents on molecular structure and gas separation.Mater. Des.2020,194, 108933..
Kim, B.; Lee, C.; Kim, J.; Choi, H.; Ahn, H.; Kim, D.; Kim, Y. H.; Kim, H. Y.; Yoon, D. K. Synergistic effect of fluorination and molecular orientational order on the dielectric properties of low-κ liquid crystal polymer films.Chem. Mat.2023,35, 10129−10138..
Wu, Y. C.; Huang, G. T.; Lian, M. Y.; Liang, R.; Deng, H. L.; Gan, F.; Zhang, Y. F.; Yi, N. B.; Tian, L. Y.; Ma, C. P.; Wei, Y. Modified triphenylmethane-based polyimides with improved optical, dielectric and solubility propertiesviapost-polymerization modification.Chinese J. Polym. Sci.2023,41, 1609−1616..
Li, Y.; Zhao, J.; Zhao, F.; Li, F.; Dai, C.; Chen, C.; Yang, Z.; Tu, G. Synergistic enhancement of mechanical and dielectric properties in transparent polyimides by regulating hydrogen bonding and microbranched cross-linking structure.ACS Appl. Polym. Mater.2024,6, 10738−10749..
Kim, H.; Kwak, G. Mechanically robust and colorless polyimide films cross-linked with a cycloaliphatic amide linkage.ACS Appl. Polym. Mater. 2024 . https://doi.org/10.1021/acsapm.4c02124.
Zhou, S.; Tao, X.; Liu, Z.; Wu, H.; Guan, Z.; Liu, L.; Li, J.; Chen, X.; Ou-Yang, W. Regulation of dihedral angle on molecular engineering for enhancing triboelectric performance.Adv. Funct. Mater. 2024, 2405443..
Tan, J.; Xie, F.; Huang, J.; Li, H.; Liu, X.; Zhao, C.; Yuan, J.; Liu, Y. High-performance black polyimide with improved solubility for flexible printed circuit boards.J. Mater. Sci.2023,58, 16855−16867..
Lei, H.; Bao, F.; Peng, W.; Qiu, L.; Zou, B.; Huang, M. Torsion effect of the imide ring on the performance of transparent polyimide films with methyl-substituted phenylenediamine.Polym. Chem.2022,13, 6606−6613..
Keulen, L.; Gallarini, S.; Landolina, C.; Spinelli, A.; Iora, P.; Invernizzi, C.; Lietti, L.; Guardone, A. Thermal stability of hexamethyldisiloxane and octamethyltrisiloxane.Energy2018,165, 868−876..
Boyle, B. M.; Heinz, O.; Miyake, G. M.; Ding, Y. Impact of the pendant group on the chain conformation and bulk properties of norbornene imide-based polymers.Macromolecules2019,52, 3426−3434..
Balcik, M.; Ogieglo,W.; Wang, Y.; Pinnau, I. Exploring physical aging in PIM-1 using molecular dynamics.J. Membr. Sci.2024,706, 122918..
Fan, J.; Yang, J.; Wang, L.; Li, H.; Tian, J.; Ye, J.; Zhao, Y. Enhanced mechanical properties of epoxy nanocomposites with mildly surface-functionalized graphene oxide by tuned amine species.Appl. Surf. Sci.2021,558, 149964..
Qin, Y.; Yin, Q.; Lyu, J.; Wang, X.; Liu, X. Tuning the persistence lengths of main chain towards colorless and transparent polyimide with low dielectric loss and excellent general properties.Polymer2024,298, 126853..
Fang, D.; Yao, K.; Ding, Y.; Li, P.; Hou, H. High dielectric polyimide composite film filled with a heat-resistant organic salt.Compos. Commun.2019,14, 29−33..
Zhang, T.; Chai, Y.; Wang, S.; Yu, J.; Fang, Z.; Jiang, S.; Li, B. Decreasing the dielectric constant and water uptake of co-polyimide films by introducing bulky spirobifluorene and cross-linked tetrafluorostyrol groups.Eur. Polym. J.2024,213, 113099..
Zhao, W.; Wei, Z.; Lu, C.; Tong, Y.; Huang, J.; Cao, X.; Shi, D.; Li, R. K. Y.; Wu, W. Construction of all-organic low dielectric polyimide hybridsviasynergistic effect between covalent organic framework and cross-linking structure.Nano Mater. Sci.2023,5, 429−438..
Ke, W. C.; Lin, J. W.; Busireddy, M. R.; Lee, Y. H.; Chen, J.-T.; Hsu, C. S. Enhancing the mechanical and dielectric properties of high thermally stable polyimidesviaa crosslinkable bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride monomer.Polymer2024,290, 126495..
Wu, M. H.; Chang, C. Y.; Liu, Y.; Chen, W. C.; Lin, Y. C. Impact of ring structure and conjugation on the dielectric properties of polyimides at a high frequency of 10–40 GHz.J. Polym. Sci.2024,62, 3307..
He, X.; Zhang, S.; Zhou, Y.; Zheng, F.; Lu, Q. The “fluorine impact” on dielectric constant of polyimides: A molecular simulation study.Polymer2022,254, 125073..
Chen, Y. C.; Lin, Y. C.; Chang, E. C.; Kuo, C. C.; Ueda, M.; Chen, W. C. Investigation of the structure–dielectric relationship of polyimides with ultralow dielectric constant and dissipation factors using density functional theory.Polymer2022,256, 125184..
Fischer, I. Dipole moments of some ortho-substituted anilines.Nature1950,165, 239−239..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution