FOLLOWUS
Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
yxiao@ecust.edu.cn (Y.X.)
mdlang@ecust.edu.cn (M.D.L.)
Published:2024-10,
Published Online:25 November 2024,
Received:13 September 2024,
Revised:29 September 2024,
Accepted:30 September 2024
Scan QR Code
Chen, J. W.; Xiao, Y.; Lang, M. D. Temperature-sensitive micelles as artificial chaperones for insulin protection. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3244-z
Jia-Wen Chen, Yan Xiao, Mei-Dong Lang. Temperature-sensitive Micelles as Artificial Chaperones for Insulin Protection. [J/OL]. Chinese Journal of Polymer Science, 2024,431-10.
Chen, J. W.; Xiao, Y.; Lang, M. D. Temperature-sensitive micelles as artificial chaperones for insulin protection. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3244-z DOI:
Jia-Wen Chen, Yan Xiao, Mei-Dong Lang. Temperature-sensitive Micelles as Artificial Chaperones for Insulin Protection. [J/OL]. Chinese Journal of Polymer Science, 2024,431-10. DOI: 10.1007/s10118-024-3244-z.
Insulin is an essential and versatile protein taking part in the control of blood glucose levels and protein anabolism. However
under prolonged storage or high temperature stress
insulin tends to unfold and aggregate into toxic amyloid fibrils
leading to loss of physiological function. Inspired by natural chaperones
a series of temperature-sensitive polycaprolactone-based micelles were designed to prevent insulin from deactivation. The micelles were fabricated through the self-assembly of amphiphilic copolymers of methoxy poly(ethylene glycol)-poly(4-diethylformamide caprolactone-
co
-caprolactone) (mPEG
17
-P(DECL-
co
-CL))
which had a regular spherical morphology with particle sizes of about 100 nm. In addition
the lower critical solution temperature (LCST) of the micelles could be tuned to 9 and 29 °C by changing the ratio of DECL to CL. Benefiting from the temperature-sensitivity of DECL segment
the binding ability of micelles to insulin could be modulated by changing the temperature. Above LCST
micelles effectively inhibited insulin aggregation and protected it from thermal inactivation due to the strong binding ability between the h
ydrophobic segment DECL and insulin. Below LCST
DECL segment returned to hydrophilic and bound weakly with insulin
leading to the release of insulin and assisting in its recovery of secondary structure. Thus
these temperature-sensitive micelles provided an effective strategy for insulin protection.
Temperature-sensitiveInsulinMicellesChaperones
Ma, F. H.; Li, C.; Liu, Y.; Shi, L. Mimicking molecular chaperones to regulate protein folding.Adv. Mater.2020,32, e1805945..
Zhang, Q.; Zhang, J.; Song, J.; Liu, Y.; Ren, X.; Zhao, Y. Protein-based nanomedicine for therapeutic benefits of cancer.ACS Nano2021,15, 8001−8038..
Zou, Q.; Chang, R.; Yan, X. Self-assembling proteins for design of anticancer nanodrugs.Chem. Asian J.2020,15, 1405−1419..
Dutta, K.; Hu, D.; Zhao, B.; Ribbe, A. E.; Zhuang, J.; Thayumanavan, S. Templated self-assembly of a covalent polymer network for intracellular protein delivery and traceless release.J. Am. Chem. Soc.2017,139, 5676−5679..
Loveday, S. M. Food proteins: technological, nutritional, and sustainability attributes of traditional and emerging proteins.Annu. Rev. Food Sci. T.2019,10, 311−339..
Chalamaiah, M.; Yu, W.; Wu, J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: a review.Food Chem.2018,245, 205−222..
Tomadoni, B.; Capello, C.; Valencia, G. A.; Gutiérrez, T. J. Self-assembled proteins for food applications: a review.Trends Food Sci. Technol.2020,101, 1−16..
Dutta, K.; Das, R.; Ling, J.; Monibas, R. M.; Carballo-Jane, E.; Kekec, A.; Feng, D. D.; Lin, S.; Mu, J.; Saklatvala, R.; Thayumanavan, S.; Liang, Y.In situforming injectable thermoresponsive hydrogels for controlled delivery of biomacromolecules.ACS Omega2020,5, 17531−17542..
Xin, X.; Xu, Y.; Shi, H.; Liu, X. General method to stabilize mesophilic proteins in hyperthermal water.iScience2021,24, 102503..
Messina, M. S.; Ko, J. H.; Yang, Z.; Strouse, M. J.; Houk, K. N.; Maynard, H. D. Effect of trehalose polymer regioisomers on protein stabilization.Polym. Chem.2017,8, 4781−4788..
Feller, G. Protein folding at extreme temperatures: Current issues.Semin. Cell Dev. Biol.2018,84, 129−137..
Abbas Syed, Q.; Hassan, A.; Sharif, S.; Ishaq, A.; Saeed, F.; Afzaal, M.; Hussain, M.; Anjum, F. M. Structural and functional properties of milk proteins as affected by heating, high pressure, Gamma and ultraviolet irradiation: a review.Int. J. Food Prop.2021,24, 871−884..
Metwalli, A. A. M.; de Jongh, H. H. J.; van Boekel, M. A. J. S. Heat inactivation of bovine plasmin.Int. Dairy J.1998,8, 47−56..
Cappelletti, V.; Hauser, T.; Piazza, I.; Pepelnjak, M.; Malinovska, L.; Fuhrer, T.; Li, Y.; Dörig, C.; Boersema, P.; Gillet, L.; Grossbach, J.; Dugourd, A.; Saez-Rodriguez, J.; Beyer, A.; Zamboni, N.; Caflisch, A.; de Souza, N.; Picotti, P. Dynamic 3D proteomes reveal protein functional alterations at high resolutionin situ.Cell.2021,184, 545−559..
Zeeshan, F.; Tabbassum, M.; Kesharwani, P. Investigation on secondary structure alterations of protein drugs as an indicator of their biological activity upon thermal exposure.Protein J.2019,38, 551−564..
Li, S. S.; Li, B. Q.; Liu, J. J.; Lu, S. H.; Zhai, H. L. Tchebichef image moment approach to the prediction of protein secondary structures based on circular dichroism.Proteins.2018,86, 751−758..
Li, X.; Lu, C.; Xia, W.; Quan, G.; Huang, Y.; Bai, X.; Yu, F.; Xu, Q.; Qin, W.; Liu, D.; Pan, X. Poly(L-glutamic acid)-basedbrush copolymers: fabrication, self-assembly, and evaluation as efficient nanocarriers for cationic protein drug delivery.AAPS PharmSciTech.2020,21, 78..
Wu, G.; Li, C.; Liu, X.; Lv, J.; Ding, Y.; Liu, Y.; Liu, Y.; Huang, F.; Shi, L.; An, Y.; Ma, R. Glucose-responsive complex micelles for self-regulated delivery of insulin with effective protection of insulin and enhanced hypoglycemic activityin vivo.Colloid. Surface B2019,180, 376−383..
Jain, A. K.; Chalasani, K. B.; Khar, R. K.; Ahmed, F. J.; Diwan, P. V. Muco-adhesive multivesicular liposomes as an effective carrier for transmucosal insulin delivery.J. Drug Target.2007,15, 417−427..
Kuskov, A. N.; Kulikov, P. P.; Goryachaya, A. V.; Tzatzarakis, M. N.; Tsatsakis, A. M.; Velonia, K.; Shtilman, M. I. Self-assembled amphiphilic poly-N-vinylpyrrolidone nanoparticles as carriers for hydrophobic drugs: stability aspects.J. Appl. Polym. Sci.2018,135, 45637..
Mirchandani, Y.; Patravale, V. B.; S, B. Solid lipid nanoparticles for hydrophilic drugs.J. Control. Rel.2021,335, 457−464..
Gelb, M. B.; Messina, K. M. M.; Vinciguerra, D.; Ko, J. H.; Collins, J.; Tamboline, M.; Xu, S.; Ibarrondo, F. J.; Maynard, H. D. Poly(trehalose methacrylate) as an excipient for insulin stabilization: mechanism and safety.ACS Appl. Mater. Interfaces2022,14, 37410−37423..
Pathak, B. K.; Das, D.; Bhakta, S.; Chakrabarti, P.; Sengupta, J. Resveratrol as a nontoxic excipient stabilizes insulin in a bioactive hexameric form.J. Comput. Aid. Mol. Des.2020,34, 915−927..
Pelegri-O’Day, E. M.; Bhattacharya, A.; Theopold, N.; Ko, J. H.; Maynard, H. D. Synthesis of zwitterionic and trehalose polymers with variable degradation rates and stabilization of insulin.Biomacromolecules2020,21, 2147−2154..
Castañeda Ruiz, A. J.; Shetab Boushehri, M. A.; Phan, T.; Carle, S.; Garidel, P.; Buske, J.; Lamprecht, A. Alternative excipients for protein stabilization in protein therapeutics: overcoming the limitations of polysorbates.Pharmaceutics. 2022 ..
Brovč, E.V.; Mravljak, J.; Šink, R.; Pajk, S. Rational design to biologics development: the polysorbates point of view.Int. J. Pharm.2020,581, 119285..
Hu, X.; Zhang, X.; Chen, D.; Li, N.; Hemar, Y.; Yu, B.; Tang, S.; Sun, Y. How much can we trust polysorbates as food protein stabilizers: the case of bovine casein.Food Hydrocolloids2019,96, 81−92..
Brovč, E. V.; Mravljak, J.; Šink, R.; Pajk, S. Degradation of polysorbates 20 and 80 catalysed by histidine chloride buffer.Eur. J. Pharm. Biopharm.2020,154, 236−245..
Dwivedi, M.; Buske, J.; Haemmerling, F.; Blech, M.; Garidel, P. Acidic and alkaline hydrolysis of polysorbates under aqueous conditions: towards understanding polysorbate degradation in biopharmaceutical formulations.Eur. J. Pharm. Sci.2020,144, 105211..
Lang, B. J.; Prince, T. L.; Okusha, Y.; Bunch, H.; Calderwood, S. K. Heat shock proteins in cell signaling and cancer.BBA. Mol. Cell Res.2022,1869, 119187..
Shan, Q.; Ma, F.; Wei, J.; Li, H.; Ma, H.; Sun, P. Physiological functions of heat shock proteins.Curr. Protein Pept. Sci.2020,21, 751−760..
Kim, J. Y.; Han, Y.; Lee, J. E.; Yenari, M. A. The 70-kDa heat shock protein (Hsp70) as a therapeutic target for stroke.Expert Opin. Ther. Tar.2018,22, 191−199..
Lu, J.; Zhang, X.; Wu, Y.; Sheng, Y.; Li, W.;Wang, W. Energy landscape remodeling mechanism of Hsp70-chaperone-accelerated protein folding.Biophys. J.2021,120, 1971−1983..
Rowles, J. E.; Keane, K. N.; Gomes Heck, T.; Cruzat, V.; Verdile, G.; Newsholme, P. Are heat shock proteins an important link between type 2 diabetes and Alzheimer Disease?Int. J. Mol. Sci. 2020 ..
Mogk, A.; Ruger-Herreros, C.; Bukau, B. Cellular functions and mechanisms of action of small heat shock proteins.Annu. Rev. Microbiol.2019,73, 89−110..
Li, C.; Liu, X.; Zhang, Y.; Lv, J.; Huang, F.; Wu, G.; Liu, Y.; Ma, R.; An, Y.; Shi, L. Nanochaperones mediated delivery of insulin.Nano Lett.2020,20, 1755−1765..
Kabir, A.; Ahmed, M. Elucidating the role of thermal flexibility of hydrogels in protein refolding.ACS Appl. Bio Mater.2020,3, 4253−4262..
Wang, H.; Li, A.; Yang, M.; Zhao, Y.; Shi, L.; Ma, R. Self-assembled nanochaperones enable the disaggregation of amyloid insulin fibrils.Sci. China Chem.2021,65, 353−362..
Beierle, J. M.; Yoshimatsu, K.; Chou, B.; Mathews, M. A.; Lesel, B. K.; Shea, K. J. Polymer nanoparticle hydrogels with autonomous affinity switching for the protection of proteins from thermal stress.Angew. Chem. Int. Ed.2014,53, 9275−9279..
Wen, L.; Zhang, S.; Xiao, Y.; He, J.; Zhu, S.; Zhang, J.; Wu, Z.; Lang, M. Organocatalytic ring-opening polymerization toward poly(γ-amide-ε-caprolactone)s with tunable lower critical solution temperatures.Macromolecules2020,53, 5096−5104..
Deng, Y.; Li, X.; Zhang, Q.; Luo, Z.; Han, C.; Dong, S. LCST phase behavior of benzo-21-crown-7 with different alkyl chains.Beilstein J. Org. Chem.2019,15, 437−444..
Barman, R.; Rajdev, P.; Mondal, T.; Dey, P.; Ghosh, S. Amphiphilic alternating copolymers with an adjustable lower critical solution temperature (LCST) and correlation with nonspecific protein adsorption.ACS Appl. Polym. Mater.2022,4, 5261−5268..
Lu, C.; Guo, S.; Liu, L.; Zhang, Y.; Li, Z.; Gu, J. Aggregation behavior of MPEG-PCL diblock copolymers in aqueous solutions and morphologies of the aggregates.J. Polym. Sci., Part B: Polym. Phys.2006,44, 3406−3417..
Yue, G. L.; Cui, Q. L.; Zhang, Y. X.; Wang, E. J.; Wu, F. P. Thermo-responsive block copolymers based on linear-type poly(ethylene glycol): tunable LCST within the physiological range.Chinese J. Polym. Sci.2012,30, 770−776..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution