FOLLOWUS
a.Department of Physics, Taizhou University, Taizhou 318000, China
b.Department of Physics, Zhejiang University, Hangzhou 310027, China
chaowang0606@126.com
Received:15 August 2024,
Revised:25 September 2024,
Accepted:2024-10-01,
Published Online:28 November 2024,
Published:01 January 2025
Scan QR Code
Yang, X.; Zhou, Y. L.; Zhao, B.; Wang, C.; Luo, M. B. Conformation and dynamics of a long active polymer chain confined in a circular cavity. Chinese J. Polym. Sci. 2025, 43, 225–234
Xiao Yang, Yan-Li Zhou, Bin Zhao, et al. Conformation and Dynamics of a Long Active Polymer Chain Confined in a Circular Cavity[J]. Chinese journal of polymer science, 2025, 43(1): 225-234.
Yang, X.; Zhou, Y. L.; Zhao, B.; Wang, C.; Luo, M. B. Conformation and dynamics of a long active polymer chain confined in a circular cavity. Chinese J. Polym. Sci. 2025, 43, 225–234 DOI: 10.1007/s10118-024-3245-y.
Xiao Yang, Yan-Li Zhou, Bin Zhao, et al. Conformation and Dynamics of a Long Active Polymer Chain Confined in a Circular Cavity[J]. Chinese journal of polymer science, 2025, 43(1): 225-234. DOI: 10.1007/s10118-024-3245-y.
The polymer with large activity forms stable compact spiral with directional rotation at the steady state. The formation of the stable compact spiral is a two-step relaxation process
where the polymer first forms a metastable swelling quasi spiral and then transforms into the stable compacted spiral near the wall of the cavity.
The conformational and dynamical properties of a long semi-flexible active polymer chain confined in a circular cavity are studied by using Langevin dynamics simulation method. Results show that the steady radius of gyration of the polymer decreases monotonically with increasing the active force. Interestingly
the polymer forms stable compact spiral with directional rotation at the steady state when the active force is large. Both the radius of gyration and the angular velocity of the spiral are nearly independent of the cavity size
but show scaling relations with the active force and the polymer length. It is further found that the formation of the stable compact spiral in most cases is a two-step relaxation process
where the polymer first forms a metastable swelling quasi spiral and then transforms into the stable compacted spiral near the wall of the cavity. The relaxation time is mainly determined by the transformation of the swelling quasi spiral
and shows remarkable dependence on the size of the cavity. Specially
when the circumference of the circular is nearly equivalent to the polymer length
it is difficult for the polymer to form the compacted spiral
leading to a large relaxation time. The underlying mechanism of the formation of the compacted spiral is revealed.
Watanabe, T.; Noritake, J.; Kaibuchi, K. Regulation of microtubules in cell migration. Trends Cell Biol. 2005 , 15 , 76−83..
Needleman, D.; Dogic, Z. Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2017 , 2 , 1−14..
Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular biology of the cell . Garland Science, Oxford, 2007 ..
Zia, R.; Dong, J.; Schmittmann, B. Modeling translation in protein synthesis with TASEP: a tutorial and recent developments. J. Stat. Phys. 2011 , 144 , 405−28..
Borejdo, J.; Burlacu, S. Velocity of movement of act in filaments in in vitro motility assay: measured by fluorescence correlation spectroscopy. Biophys. J. 1992 , 61 , 1267−1280..
Liu, L.; Tüzel, E.; Ross, J. L. Loop formation of microtubules during gliding at high density. J. Phys.: Condens. Matter 2011 , 23 , 374104..
Maloney, A.; Herskowitz, L. J.; Koch, S. J. Effects of surface passivation on gliding motility assays. PLoS ONE 2011 , 6 , e19522..
Palacci, H.; Idan, O.; Armstrong, M. J.; Agarwal, A.; Nitta, T.; Hess, H. Velocity fluctuations in kinesin-1 gliding motility assays originate in motor attachment geometry variations. Langmuir 2016 , 32 , 7943−7950..
Lam, A.; Curschellas, C.; Krovvidi, D.; Hess, H. Controlling self-assembly of microtubule spools via kinesin motor density. Soft Matter 2014 , 10 , 8731−8736..
Bhadwal, A. S.; Mottram, N. J.; Saxena, A.; Sage, I. C.; Brown, C. V. Electrically controlled topological micro cargo transportation. Soft Matter 2020 , 12 , 2961−2970..
Demirörs, A. F.; Akan, M. T.; Poloni, E.; Studart, A. R. Active cargo transport with Janus colloidal shuttles using electric and magnetic fields. Soft Matter 2018 , 14 , 4741−4749..
Elgeti, J.; Winkler, R. G.; Gompper, G. Physics of microswimmers-single particle motion and collective behavior: a review. Rep. Prog. Phys. 2015 , 78 , 056601..
Zhu, G. L.; Gao, L. J.; Sun, Y. H.; Wei, W. J; Yan, L. T. Non-equilibrium structural and dynamic behaviors of active polymers in complex and crowded environments. Rep. Prog. Phys. 2024 , 87 , 054601..
Deblais, A.; Prathyusha, K. R.; Sinaasappel, R.; Tuazon, H.; Tiwari, I.; Patil, V. P.; Bhamla, M. S. Worm blobs as entangled living polymers: from topological active matter to flexible soft robot collectives. Soft Matter 2023 , 19 , 7057−7069..
Eisenstecken, T.; Gompper, G.; Winkler, R. G. Conformational properties of active semiflexible polymers. Polymers 2016 , 8 , 304..
Kaiser, A.; Babel, S.; ten Hagen, B.; von Ferber, C.; Löwen, H. How does a flexible chain of active particles swell. J. Chem. Phys. 2015 , 142 , 124905..
Eisenstecken, T.; Gompper, G.; Winkler, R. G. Internal dynamics of semiflexible polymers with active noise. J. Chem. Phys. 2017 , 146 , 154903..
Nishiguchi, D.; Iwasawa, J.; Jiang, H. R.; Sano, M. Flagellar dynamics of chains of active janus particles fueled by an ac electric field. New J. Phys. 2018 , 20 , 015002..
Sasaki, Y.; Takikawa, Y.; Jampani, V. S. R.; Hoshikawa, H.; Seto, T.; Bahr, C.; Herminghaus, S.; Hidaka, Y.; Orihara, H. Colloidal caterpillars for cargo transportation. Soft Matter 2014 , 10 , 8813−8820..
Hu, H. X.; Shen, Y. F.; Wang, C.; Luo, M. B. Dynamics of a two-dimensional active polymer chain with a rotation-restricted active head. Soft Matter 2022 , 18 , 8820−8829..
Luo, M. B.; Shen, Y. F. La ngevin dynamics simulations for the critical adsorption of end-grafted active polymers. Soft Matter 2024 , 20 , 5113−5121..
Shen, Y. F.; Hu, H. X.; Luo, M. B. Adsorption of active polymers on attractive nanoparticles. Soft Matter 2024 , 20 , 621−628..
Hu, H. X.; Shen, Y. F.; Luo, M. B. Translocation of two-dimensional active polymers through nanopores using Langevin dynamics simulations. J. Chem. Phys. 2024 , 160 , 184902..
Kron, S. J.; Spudich, J. A. Fluorescent actin filaments move on myosin fixed to a glass surface. Proc. Natl. Acad. Sci. U. S. A. 1986 , 83 , 6272−6276..
Fazelzadeh, M.; Irani, E.; Mokhtari, Z.; Jabbari-Farouji, S. Effects of inertia on conformation and dynamics of tangentially driven active filaments. Phys. Rev. E 2023 , 108 , 024606..
Bianco, V.; Locatelli, E.; Malgaretti. P. Globulelike conformation and enhanced diffusion of active polymers. Phys. Rev. Lett. 2018 , 121 , 217802..
Locatelli, E.; Bianco, V.; Malgaretti, P. Activity-induced collapse and arrest of active polymer rings. Phys. Rev. Lett. 2021 , 126 , 097801..
Isele-Holder, R. E.; Elgeti, J.; Gompper, G. Self-propelled worm-like filaments: spontaneous spiral formation, structure, and dynamics. Soft Matter 2015 , 11 , 7181−7190..
Jiang, H. J.; Hou, Z. H. Motion transition of active filaments: rotation without hydrodynamic interactions. Soft Matter 2014 , 10 , 1012−1017..
Chelakkot, R.; Gopinath, A.; Mahadevan, L.; Hagan, M. F. Flagellar dynamics of a connected chain of active, polar, Brownian particles. J. R. Soc. Interface 2014 , 11 , 20130884..
Fily, Y.; Subramanian, P.; Schneider, T. M.; Chelakkot, R.; Gopinath, A. Buckling instabilities and spatio-temporal dynamics of active elastic filaments. J. R. Soc. Interface 2020 , 17 , 20190794..
Sekimo to, K.; Mori, N.; Tawada, K.; Toyoshima, Y. Y. Symmetry breaking instabihties of an in vitro biological system. Phys. Rev. Lett. 1995 , 75 , 172−175..
Bourdieu, L.; Duke, T.; Elowitz, M. B.; Winkelmann, D. A.; Leibler, S.; Libchabe, A. Spiral defects in motility assays: a measure of motor protein force. Phys. Rev. Lett. 1995 , 75 , 176−179..
Wang, C.; Zhou, Y. L.; Yang, X.; Chen, Y. C.; Shen, Y. F.; Luo, M. B. Conformation and dynamics of a tethered active polymer chain. Phys. Rev. E 2022 , 106 , 054501..
Isele-Holder, R. E.; Jäger, J.; Saggiorato, G.; Elgeti, J.; Gompper, G. Dynamics of self-propelled filaments pushing a load. Soft Matter 2016 , 12 , 8495−8505..
Wang, C.; Hu, H. X.; Zhou, Y. L.; Zhao, B.; Luo, M. B. Translocation of a self-propelled polymer through a narrow pore. Chinese J. Polym. Sci. 2022 , 40 , 1670−1678..
Tan, F.; Wang, J. L.; Yan, R.; Zhao, N. R. Forced and spontaneous translocation dynamics of a semiflexible active polymer in two dimensions . Soft Matter 2024 , 20 , 1120−1132..
Tan, F.; Yan, R.; Zhao, C. N.; Zhao, N. R. Translocation dynamics of an active filament through a long-length scale channel. J. Phys. Chem. B 2023 , 127 , 8603−8615..
Shen, C.; Qin, C. R.; Xu, T. L.; Chen, K.; Tian, W. D. Structure and dynamics of an active polymer adsorbed on the surface of a cylinder. Soft Matter 2022 , 18 , 1489−1497..
Wang, Y.; Gao, Y. W.; Tian, W. D.; Chen, K. Obstacle-induced giant jammed aggregation of active semiflexible filaments. Phys. Chem. Chem. Phys. 2022 , 24 , 23779−23789..
Wu, S.; Li, J. X.; Lei, Q. L. Facilitated dynamics of an active polymer in 2D crowded environments with obstacles. Soft Matter 2022 , 18 , 9263−9272..
Mokhtari, Z.; Zippelius, A. Dynamics of active filaments in porous media. Phys. Rev. Lett. 2019 , 123 , 028001..
Heeremans, T.; Deblais, A.; Bonn, D.; Woutersen, S. Chromatographic separation of active polymer-like worm mixtures by contour length and activity. Sci. Adv. 2022 , 8 , eabj7918..
Das, S.; Cacciuto, A. Dynamics of an active semi-flexible filament in a spherical cavity. J. Chem. Phys. 2019 , 151 , 244904..
Rezaie-Dereshgi, A.; Khalilian, H.; Sarabadani, J. Translocation of an active polymer into a two dimensional circular nano-container. J. Phys.: Condens. Matter 2023 , 35 , 355101..
Wang, C.; Zhou, Y. L.; Yang, X.; Wu, F.; Luo, M. B. Injection of a self-propelled polymer into a small circular cavity. Chinese J. Polym. Sci. 2024 , 42 , 886−894..
0
Views
50
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution