FOLLOWUS
a.Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
b.Department of Chemistry, Northeast Normal University, Changchun 130024, China
zhangxn@ciac.ac.cn (X.N.Z.)
chenl686@nenu.edu.cn (L.C.)
xiaocs@ciac.ac.cn (C.S.X.)
Published:2024-10,
Published Online:25 November 2024,
Received:19 August 2024,
Revised:15 October 2024,
Accepted:17 October 2024
Scan QR Code
Zhu, Y. W.; Man, T. T.; Zhao, M. M.; Chen, J. Y.; Yan, Y.; Zhang, X. N.; Chen, L.; Xiao, C. S. Recyclable and self-healable polydimethylsiloxane elastomers based on knoevenagel condensation. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3248-8
Yao-Wei Zhu, Tong-Tong Man, Ming-Ming Zhao, et al. Recyclable and Self-healable Polydimethylsiloxane Elastomers Based on Knoevenagel Condensation. [J/OL]. Chinese Journal of Polymer Science, 2024,431-8.
Zhu, Y. W.; Man, T. T.; Zhao, M. M.; Chen, J. Y.; Yan, Y.; Zhang, X. N.; Chen, L.; Xiao, C. S. Recyclable and self-healable polydimethylsiloxane elastomers based on knoevenagel condensation. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3248-8 DOI:
Yao-Wei Zhu, Tong-Tong Man, Ming-Ming Zhao, et al. Recyclable and Self-healable Polydimethylsiloxane Elastomers Based on Knoevenagel Condensation. [J/OL]. Chinese Journal of Polymer Science, 2024,431-8. DOI: 10.1007/s10118-024-3248-8.
Elastomers are widely used in various fields owing to their excellent tensile properties. Recyclable and self-healing properties are key to extending the service life of elastomers. Accumulating evidence indicates that dynamic covalent chemistry has emerged as a powerful tool for constructing recyclable and self-healing materials. In this work
we demonstrate the preparation of a recyclable and self-healable polydimethylsiloxane (PDMS) elastomer based on the Knoevenagel condensation (KC) reaction. This PDMS elastomer was prepared by the KC reaction catalyzed by 4-dimethylaminopyridine (DMAP). The obtained PDMS elastomer exhibited an elongation at break of 266%
a tensile strength of 0.57 MPa
and a good thermal stability (
T
d
=357 °C). In addition
because of the presence of dynamic C=C bonds formed by the KC reaction and low glass transition temperature (
T
g
=−117 °C). This PDMS exhibited good self-healing and recycling properties at room temperature and could be reprocessed by hot pressing. In addition
the PDMS elastome
r exhibits good application prospects in the fields of adhesives and flexible electronic devices.
Dynamic covalent chemistryElastomerKnoevenagel condensation reactionPolydimethylsiloxaneRecyclableSelf-healing
Li, S.; Zhang, J.; He, J.; Liu, W.; Wang, Y.; Huang, Z.; Pang, H.; Chen, Y. Functional PDMS elastomers: bulk composites, surface engineering, and precision fabrication.Adv. Sci.2023,10, 2304506..
White, B. T.; Long, T. E. Advances in polymeric materials for electromechanical devices.Macromol. Rapid Commun. 2018 , 1800521..
Sun, S.; Fei, G.; Wang, X.; Xie, M.; Guo, Q.; Fu, D.; Wang, Z.; Wang, H.; Luo, G.; Xia, H. Covalent adaptable networks of polydimethylsiloxane elastomer for selective laser sintering 3D printing.Chem. Eng. J.2021,412, 128675..
Jiang, F.; Zhang, Z.; Wang, X.; Cheng, G.; Zhang, Z.; Ding, J. Pneumatically actuated self-healing bionic crawling soft robot.J. Intell. Robot. Syst.2020,100, 445−454..
Hu, R.; Yao, B.; Geng, Y.; Zhou, S.; Li, M.; Zhong, W.; Sun, F.; Zhao, H.; Wang, J.; Ge, J.; Wei R. High-fidelity bioelectrodes with bidirectional ion–electron transduction capability by integrating multiple charge-transfer processes.Adv. Mater.2024, 2403111..
Li, C. H.; Wang, C.; Keplinger, C.; Zuo, J. L.; Jin, L., Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; You, X. Z.; Bao, Z. A highly stretchable autonomous self-healing elastomer.Nat. Chem.2016,8, 618−624..
Sumerlin, B. S. Next-generation self-healing materials.Science2018,362, 150−151..
Huynh, T. P.; Sonar, P.; Haick, H. Advanced materials for use in soft self-healing devices.Adv. Mater.2017,29, 1604973..
Murphy, E. B.; Wudl, F. The world of smart healable materials.Prog. Polym. Sci.2010,35, 223−251..
Zhou, X.; Jin, B.; Zhu, Z.; Wu, J.; Zhao, Q.; Chen, G. Metal-ligand bonds based reprogrammable and re-processable supramolecular liquid crystal elastomer network.Angew. Chem. Int. Ed.2024, e202409182..
Van Zee, N. J.; Nicolaÿ, R. Vitrimers: permanently crosslinked polymers with dynamic network topology.Prog. Polym. Sci.2020,104, 101233..
An, X. M.; Wang, Y. P.; Zhu, T. S.; Jia, X. D.;Zhang, Q. H. A self-healing elastomer with extremely high toughness achieved by acylsemicarbazide hydrogen bonding and Cu2+-neocuproine coordination interactions.Chinese J. Polym. Sci.2024,42, 1425−1434..
Yi, X. T.; Cheng, F.; Wei, X. J.; Li, H.B.; Qian, J.; He, J. Bioinspired adhesive and self-healing bacterial cellulose hydrogels formed by a multiple dynamic crosslinking strategy for sealing hemostasis.Cellullose2023,30, 397−411..
Liguori, A.; Hakkarainen, M. Designed from biobased materials for recycling: imine-based covalent adaptable networks.Macromol. Rapid Commun.2022,43, 2100816..
Wang, M. M.; Gao, H.; Wang, Z.; Mao, Y.; Yang, J.; Wu, B.; Jin, L.; Zhang, C.; Xia, Y.; Zhang, K. Rapid self-healed vitrimersviatailored hydroxyl esters and disulfide bonds.Polymer2022,248, 124801..
Dong, G. W.; He, Q. G.; Cai, S. Q. Magnetic vitrimer-based soft robotics.Soft Matter2022,18, 7604−7611..
Wu, H. T.; Jin, B. Q.; Wang, H.; Wu, W. Q.; Cao, Z. X.; Yuan, Z. Y.; Huang, Y.; Li, W. H.; Huang, G. S.; Liao, L. S.; Wu, J. R. A robust self-healing polyurethane elastomer enabled by tuning the molecular mobility and phase morphology through disulfide bonds.Chinese J. Polym. Sci.2021,39, 1299−1309..
Zhang, T.; Su, H. X.; Shi; X. R.; Li, C. Self-healing siloxane elastomers constructed by hierarchical covalent crosslinked networks and reversible dynamic bonds for flexible electronics.J. Mater. Sci.2022,57, 10444−10456..
Ye, J.;Zu, Z. J.; Lin, Z. Q.; Xiang, H. P.; Zhang, M. Q. Intrinsic self-healing polysiloxane materials: from single dynamic crosslinked network to multiple dynamic crosslinked networks.Acta Polymerica Sinica(in Chinese)2023,54, 1028−1054..
Wang, X.; Sun, J. Engineering of reversibly cross-linked elastomers toward flexible and recyclable elastomer/carbon fiber composites with extraordinary tearing resistance.Adv. Mater.2024, 2406252..
Cope, A. C. Condensation reactions. I. The condensation of ketones with cyanoacetic esters and the mechanism of the Knoevenagel reaction.J. Am. Chem. Soc.1937,59, 2327−2330..
Daubeuf, F.; Hachet, Haas, M.; Gizzi, P.; Gasparik, V.; Bonnet, D.; Utard, V., Hibert, M.; Frossard, N.; Galzi, J. L. An antedrug of the CXCL12 neutraligand blocks experimental allergic asthma without systemic effect in mice.J. Biol. Chem.2013,288, 11865−11876..
Rajasekaran, K.; Sarathi, A.; Ramalakshmi, S. Micellar catalysis in the Retro-Knoevenagel reaction of ethyl-α-cyanocinnamates.J. Chem. Sci.2008,120, 475−480..
König, N. F.; Mutruc, D.; Hecht, S. Accelerated discovery of α-cyanodiarylethene photoswitches.J. Am. Chem. Soc.2021,143, 9162−9168..
Gu, R. R.; Flidrova, K.; Lehn, J. M. Dynamic covalent metathesis in the C═C/C═N exchange between Knoevenagel compounds and imines.J. Am. Chem. Soc.2018,140, 5560−5568..
Kulchat, S.; Meguellati, K.; Lehn J. M. Organocatalyzed and uncatalyzed C=C/C=C and C=C/C=N exchange processes between knoevenagel and imine compounds in dynamic covalent chemistry.Helv. Chim. Acta2014,97, 1219−1236..
Wilhelms, N.; Kulchat, S.; Lehn, J. M. Organocatalysis of C=N/C=N and C=C/C=N exchange in dynamic covalent chemistry.Helv. Chim. Acta2012,95, 2635−2651..
Xu, S.; Liao, Z.; Dianat, A.; Park, S. W.; Addicoat, M. A.; Fu, Y.; Pastoetter, D. L.; Fabozzi, F. G.; Liu, Y.; Cuniberti, G.; Richter, M.; Hecht, S.; Feng, X. Combination of Knoevenagel polycondensation and water-assisted dynamic michael-addition-elimination for the synthesis of vinylene-linked 2D covalent organic frameworks.Angew Chem. Int. Ed.2022,134, e202202492..
Ding, X.; Li, G.; Zhang, P.; Xiao, C. Constructing thermally reversible dynamic hydrogelsviacatalysis-free knoevenagel condensation.ACS Macro Lett.2020,9, 830−835..
Ding, X.; Wang, Y.; Liu, J.; Zhang, P.; Li, G.; Sun, T. Xiao, C. Injectablein situforming double-network hydrogel to enhance transplanted cell viability and retention.Chem. Mater.2021,33, 5885−5895..
Ding, X.; Li, G.; Zhang, P.; Jin, E.; Xiao, C.; Chen, X. Injectable self-healing hydrogel wound dressing with cysteine-specific on-demand dissolution property based on tandem dynamic covalent bonds.Adv. Funct. Mater.2021,31, 2011230..
Zhu, Y.; Man, T.; Tian, Y.; Zhang, X.; Liu, J.; Chen, L.; Xiao, C. Dynamic C═C bond-based recyclable thermosetting polymers formed by Knoevenagel condensation.Macromolecules2024,57, 1962−1969..
Guo, H.; Han, Y.; Zhao, W.; Yang, J,; Zhang, L. Universally autonomous self-healing elastomer with high stretchability.Nat. Commun.2020,11, 2037..
Chen, Q.; Zhao, X.; Li, B.; Sokolov, A. P.; Tian, M.; Advincula, R. C.; Cao P. Exceptionally recyclable, extremely tough, vitrimer-like polydimethylsiloxane elastomersviarational network design.Matter2023,6, 3378−3393..
Wang, S. J.; Wang, L.; Su, H. Z.; Wu, Z. C.; Zhang, Q. G.; Fan, W.; Jing, X. L. Room-temperature self-healing and recyclable PDMS elastomers with superior mechanical properties for triboelectric nanogenerators.Chinese J. Polym. Sci.2024,42, 1566−1577..
Wang, P.; Yang, L.; Dai, B.; Yang, Z.; Guo, S.; Gao, G.; Xu, L.; Sun, M.; Yao, K.; Zhu, J. A self-healing transparent polydimethylsiloxane elastomer based on imine bonds.Eur. Polym. J.2020,123, 109382..
Lv, C.; Zhao, K.; Zheng, J. A highly stretchable self-healing poly(dimethylsiloxane) elastomer with reprocessability and degradability.Macromol. Rapid Commun.2018,39, 1700686..
Zhang, B. L.; Zhang, P.; Zhang, H. Z.; Yan, C.; Zheng, Z.; Wu, B.; Yu, Y. A transparent, highly stretchable, autonomous self-healing poly(dimethyl siloxane) elastomer.Macromol. Rapid Commun.2017,38, 1700110..
Chen, X., Sun, P., Tian, H., Li, X., Wang, C., Duan, J., Luo, Y., Li, S., Chen, X., Shao, J., Self-healing and stretchable conductor based on embedded liquid metal patterns within imprintable dynamic covalent elastomer.J. Mater. Chem. C 2022 ,10, 1039-1047..
Li, Y.; Wang, Y.; Wang, S.; Ye, Z.; Bian, C.; Xing, X.; Hong, T.; Jing, X. Highly tunable and robust dynamic polymer networksviaconjugated–hindered urea bonds.Macromolecules2022,55, 9091−9102..
Png, Z. M.; Zheng, J.; Kamarulzaman, S.; Wang, S.; Li, Z.; Goh, S. S. Fully biomass-derived vitrimeric material with water-mediated recyclability and monomer recovery.Green Chem.2022,24, 5978−5986..
Yang, Z. P.; Li, H. Q.; Zhang, L.; Lai, X.; Zeng, X. Highly stretchable, transparent and room-temperature self-healable polydimethylsiloxane elastomer for bending sensor.J. Colloid Interface Sci.2020,570, 1−10..
Lei, H.; Wang, S.; Liaw, D.J.; Cheng, Y.; Yang, X.; Tan, J.; Chen, X.; Gu, J.; Zhang Y. Tunable and processable shape-memory materials based on solvent-free, catalyst-free polycondensation between formaldehyde and diamine at room temperature.ACS Macro Lett.2019,8, 582−587..
Lei, Z.; Chen, H.; Luo, C.; Rong, Y.; Hu, Y.; Jin, Y.; Long, R.; Yu, K.; Zhang, W. Recyclable and Malleable Thermosets Enabled by Activating Dormant Dynamic Linkages.Nat. Chem.2022,14, 1399−1404..
Lee, B. K.; Ryu, J. H.; Baek, I. B.; Kim, Y.; Jang, W. I.; Kim, S. H.; Yoon, Y. S.; Kim, S. H.; Hong, S. G.; Byun, S.; Yu, H. Y. Silicone-based adhesives with highly tunable adhesion force for skin-contact applications.Adv. Healthc. Mater.2017,6, 1700621..
Lee, S. H.; Kim, S. W.; Kang, B. S.; Chang, P. S.; Kwak, M. K. Scalable and continuous fabrication of bio-inspired dry adhesives with a thermosetting polymer.Soft Matter2018,14, 2586−2593..
Shen, C.; Li, D.; Xiao, S.; Peng, Z.; Chen, S. Molecular mechanism of the improved adhesion between PDMS adhesive and silicon substrate after thermal treatment.Int. J. Adhes. Adhes.2023,127, 103497..
Witschel, M. C.; Höffken, H. W.; Seet, M.; Parra, L.; Mietzner, T.; Thater, F.; Niggeweg, R.; Röhl, F.; Illarionov, B.; Rohdich, F.; Kaiser, J. Inhibitors of the herbicidal target IspD: allosteric site binding.Angew. Chem. Int. Ed.2011,50, 7931−7935..
Chen, S.; Li, Z.; Wu, Y.; Mahmood, N.; Lortie, F.; Bernard, J.; Binder, W. H.; Zhu, J. Hydrogen-bonded supramolecular polymer adhesives: straightforward synthesis and strong substrate interaction.Angew. Chem. Int. Ed.2022,61, e202203876..
Wang, S.; Wang, Z.; Zhang, L.; Song, Z.; Liu, H.; Xu, X. Sweat-adaptive adhesive hydrogel electronics enabled by dynamic hydrogen bond networks.Chem. Eng. J.2024,492, 152290..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution