FOLLOWUS
a.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
b.School of Materials Science and Engineering, Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
chenif@pku.edu.cn (Y.F.C.)
xhwan@pku.edu.cn (X.H.W.)
Published:2024-10,
Published Online:25 November 2024,
Received:05 July 2024,
Revised:30 September 2024,
Accepted:11 October 2024
Scan QR Code
Li, Y.; Kang, S. M.; Shi, G.; Chen, Y. F.; Li, B. W.; Zhang, J.; Wan, X. H. Synthesis of proline-derived helical copolyacetylenes as chiral stationary phases for HPLC enantioseparation. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3249-7
Yue Li, Shu-Ming Kang, Ge Shi, et al. Synthesis of Proline-Derived Helical Copolyacetylenes as Chiral Stationary Phases for HPLC Enantioseparation. [J/OL]. Chinese Journal of Polymer Science, 2024,431-9.
Li, Y.; Kang, S. M.; Shi, G.; Chen, Y. F.; Li, B. W.; Zhang, J.; Wan, X. H. Synthesis of proline-derived helical copolyacetylenes as chiral stationary phases for HPLC enantioseparation. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3249-7 DOI:
Yue Li, Shu-Ming Kang, Ge Shi, et al. Synthesis of Proline-Derived Helical Copolyacetylenes as Chiral Stationary Phases for HPLC Enantioseparation. [J/OL]. Chinese Journal of Polymer Science, 2024,431-9. DOI: 10.1007/s10118-024-3249-7.
A series of optically active copolymers with various feed ratios have been synthesized through helix-sense-selective copolymerization catalyzed by [Rh(norbornadiene)Cl
]
2
-triethylamine. This process involves two proline-derived acetylene monomers
(
S
)-
N
-(4-chlorophenyl)carbamoyl-2-ethynyl pyrrolidine (MCl) and (
S
)-
N
-(
tert
-butoxycarbonyl)-2-ethynyl pyrrolidine
followed by acidic deprotection and neutralization. These copolymers adopt helical conformations with a preferred handedness
as demonstrated by nuclear magnetic resonance spectroscopy and a series of spectroscopic analyses. The chiroptical activity intensity of copolymer has been found to increase with MCl content. Consequently
the enantioseparation capabilities of copolymers containing 95 mol%
90 mol%
and 85 mol% MCl units have been assessed as chiral stationary phases in high-performance liquid chromatography because of their good chiroptical activities. These chiral stationary phases effectively enantioseparate racemic alcohols
sulfoxides
amides
and metal complexes. Notably
the copolymer with 90 mol% MCl shows superior chiral recognition ability
especially for 1-(2
4-dichlorophenyl)-2-(1
H
-imidazol-1-yl)ethanol (
α
=1.19) and 4-methylbenzenesulfinamide (
α
=1.47). Insights from molecular dynamic simulation and autodock analysis indicate that hydrogen bonding and
π
-
π
stacking interactions between the chiral stationary phases and enantiomers play
a key role for successful chiral separation. Our contribution not only demonstrates the importance of hydrogen bonding donor and copolymer chiroptical activity of chiral stationary phases for chiral resolution
but will also provide valuable insights for the future development of novel stationary phases.
Helical copolyacetyleneChiral stationary phaseHigh performance liquid chromatographyEnantioseparationHydrogen bonding
Shimomura, K.; Ikai, T.; Kanoh, S.; Yashima, E.; Maeda, K. Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state.Nat. Chem.2014,6, 429−434..
Hirose, D.; Isobe, A.; Quiñoá, E.; Freire, F.; Maeda, K. Three-state switchable chiral stationary phase based on helicity control of an optically active poly(phenylacetylene) derivative by using metal cations in the solid state.J. Am. Chem. Soc.2019,141, 8592−8598..
Navarro-Sanchez, J.; Argente-García, A. I.; Moliner-Martínez, Y.; Roca-Sanjuan, D.; Antypov, D.; Campíns-Falcó, P.; Rosseinsky, M. J.; Marti-Gastaldo, C. Peptide metal-organic frameworks for enantioselective separation of chiral drugs.J. Am. Chem. Soc.2017,139, 4294−4297..
Jiang, H.; Yang, K.; Zhao, X.; Zhang, W.; Liu, Y.; Jiang, J.; Cui, Y. Highly stable Zr(IV)-based metal-organic frameworks for chiral separation in reversed-phase liquid chromatography.J. Am. Chem. Soc.2020,143, 390−398..
Yuan, C.; Wang, Z.; Xiong, W.; Huang, Z.; Lai, Y.; Fu, S.; Dong, J.; Duan, A.; Hou, X.; Yuan, L.-M. Cyclodextrin incorporation into covalent organic frameworks enables extensive liquid and gas chromatographic enantioseparations.J. Am. Chem. Soc.2023,145, 18956−18967..
Ikai, T.; Ito, M.; Oki, K.; Suzuki, N.; Yashima, E. One-handed helical polyacetylenes bearing axially-chiral 2-arylpyridyl-N-oxide units for efficient chromatographic enantioseparation of chiral aromatic and aliphatic alcohols.Angew. Chem. Int. Ed.2023,135, e202306252..
Shen, J.; Okamoto, Y. Efficient separation of enantiomers using stereoregular chiral polymers.Chem. Rev.2016,116, 1094−1138..
Okamoto, Y.; Suzuki, K.; Ohta, K.; Hatada, K.; Yuki, H. Optically active poly(triphenylmethyl methacrylate) with one-handed helical conformation.J. Am. Chem. Soc.1979,101, 4763−4765..
Li, J.; Wang, Z.; Ye, X.; Wan, X. Efficient preparation of "tailor-made" polymeric additives for the selective crystallization of chiral compounds.Acta Polymerica Sinica(in Chinese)2023,54, 1498−1508..
Shi, G.; Wang, S.; Guan, X.; Zhang, J.; Wan, X. Synthesis and thermo-responsive behavior of helical polyacetylenes derived from proline.Chem. Commun.2018,54, 12081−12084..
Guan, X.; Wang, S.; Shi, G.; Zhang, J.; Wan, X. Thermoswitching of helical inversion of dynamic polyphenylacetylenes through cis-trans isomerization of amide pendants.Macromolecules2021,54, 4592−4600..
Wang, S.; Xie, S.; Du, H.; Zeng, H.; Zhang, J.; Wan, X. Visualized thermoresponsive helix-helix switch of polyphenylacetylene with a wide-range tunable transition temperature.Sci. China Chem.2023,66, 887−895..
Sun, Z.-Z.; Zhang, Y. N.; Qiu, H. Y.; Lu, X. T.; Ren, L. X.; Shen, L. F.; Li, W.; Zhang, A. Synthesis of helical poly(phenylacetylene)s carrying dendritic pendants with varied branching densities through polymerization in different solvents.Chinese J. Polym. Sci.2023,41, 1543−1554..
Zhang, G.; Cheng, X.; Wang, Y.; Zhang, W. Supramolecular chiral polymeric aggregates: construction and applications.Aggregate2023,4, e262..
Maeda, K.; Maruta, M.; Sakai, Y.; Ikai, T.; Kanoh, S. Synthesis of optically active poly(diphenylacetylene)s using polymer reactions and an evaluation of their chiral recognition abilities as chiral stationary phases for HPLC.Molecules2016,21, 1487..
Maeda, K.; Maruta, M.; Shimomura, K.; Ikai, T.; Kanoh, S. Chiral recognition ability of an optically active poly(diphenylacetylene) as a chiral stationary phase for HPLC.Chem. Lett.2016,45, 1063−1065..
Xu, X. H.; Kang, S. M.; Gao, R. T.; Chen, Z.; Liu, N.; Wu, Z. Q. Precise synthesis of optically active and thermo-degradable poly(trifluoromethyl methylene) with circularly polarized luminescence.Angew. Chem. Int. Ed.2023,62..
Wang, Y.; Sakamoto, T.; Koyama, Y.; Takanashi, Y.; Kumaki, J.; Cui, J. X.; Wan, X. H.; Nakano, T. Photo-induced helix-helix transition of a polystyrene derivative.Polym. Chem.2014,5, 718−721..
Li, X. F.; Wang, R.; Wu, C. J.; Chen, J. X.; Zhang, J.; Cui, D. M.; Wan, X. H. Effect of the tactic structure on the chiroptical properties of helical vinylbiphenyl polymers.Polym. Chem.2019,10, 3887−3894..
Zhang, C.; Wang, H.; Geng, Q.; Yang, T.; Liu, L.; Sakai, R.; Satoh, T.; Kakuchi, T.; Okamoto, Y. Synthesis of helical poly(phenylacetylene)s with amide linkage bearing L-phenylalanine and L-phenylglycine ethyl ester pendants and their applications as chiral stationary phases for HPLC.Macromolecules2013,46, 8406−8415..
Zhang, C. Chiral recognition of helical poly(phenylacetylene) derivatives bearing L-amino acid ethyl ester pendants.Acta Polymeric Sinica(in Chinese)2013, 811..
Zhang, C.; Liu, F.; Li, Y.; Shen, X.; Xu, X.; Sakai, R.; Satoh, T.; Kakuchi, T.; Okamoto, Y. Influence of stereoregularity and linkage groups on chiral recognition of poly(phenylacetylene) derivatives bearing L-leucine ethyl ester pendants as chiral stationary phases for HPLC.J. Polym. Sci., Part A: Polym. Chem.2013,51, 2271−2278..
Zhou, Y.; Zhang, C.; Zhou, Z.; Zhu, R.; Liu, L.; Bai,J.; Dong, H.; Satoh, T.; Okamoto, Y. Influence of different sequences of L-proline dipeptide derivatives in the pendants on the helix of poly(phenylacetylene)s and their enantioseparation properties.Polym. Chem.2019,10, 4810−4817..
Zhou, Y.; Zhang, C.; Ma, R.; Liu, L.; Dong, H.; Satoh, T.; Okamoto, Y. Synthesis of helical poly(phenylacetylene) derivatives bearing diastereomeric pendants for enantioseparation by HPLC.New J. Chem.2019,43, 3439−3446..
Zhou, Y.; Zhu, R.; Zhang, C.; Liu, X.; Wang, Z.; Zhou, Z.; Liu, L.; Dong, H.; Satoh, T.; Okamoto, Y. Synthesis of poly(phenylacetylene)s containing chiral phenylethyl carbamate residues as coated-type CSPs with high solvent tolerability.Chirality2020,32, 547−555..
Shi, G.; Dai, X.; Xu, Q.; Shen, J.; Wan, X. Enantioseparation by high-performance liquid chromatography on proline-derived helical polyacetylenes.Polym. Chem.2021,12, 242−253..
Shi, G.; Xu, Q.; Dai, X.; Zhang, j.; Shen, J.; Wan, X. Effect of aromatic substituent on chiral recognition of helical polyacetylene-based chiral stationary phases for high-performance liquid chromatography.Chem. J. Chinese U.2021,42, 2673−2682..
Shi, G.; Li, Y.; Dai, X.; Shen, J.; Wan, X. Effect of pendant stereostructure on backbone conformation and enantioseparation ability of helical polyacetylene-based chiral stationary phases.Chirality2022,34, 574−586..
Shi, G.; Dai, X.; Zhou, Y.; Zhang, J.; Shen, J.; Wan, X. Synthesis and enantioseparation of proline-derived helical polyacetylenes as chiral stationary phases for HPLC.Polym. Chem.2020,11, 3179−3187..
Li, Y.; Shi, G.; Kang, S. M.; Zeng, H.; Zhang, J.; Wan, X. Effect of substituent on the enantioseparation poperty of helical polyacetylene-based chiral stationary phases for high-performance liquid chromatography.Acta Polymerica Sinica(in Chinese)2023,54, 612−621..
Pirkle, W. H.; Pochapsky, T. C. Considerations of chiral recognition relevant to the liquid chromatography separation of enantiomers.Chem. Rev.1989,89, 347−362..
Okamoto, Y.; Yashima, E. Polysaccharide derivatives for chromatographic separation of enantiomers.Angew. Chem. Int. Ed.1998,37, 1020−1043..
Ikai, T.; Okamoto, Y. Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography.Chem. Rev.2009,109, 6077−6101..
Scriba, G. K. Chiral recognition in separation science-an update.J. Chromatogr. A2016,1467, 56−78..
Nascimento, C. S.; Lopes, J. F.; Guimarães, L.; Borges, K. B. Molecular modeling study of the recognition mechanism and enantioseparation of 4-hydroxypropranolol by capillary electrophoresis using carboxymethyl-β-cyclodextrin as the chiral selector.Analyst2014,139, 3901−3910..
Qiao, L.; Zhou, X.; Li, X.; Du, W.; Yu, A.; Zhang, S.; Wu, Y. Synthesis and performance of chiral ferrocene modified silica gel for mixed-mode chromatography.Talanta2017,163, 94−101..
Shen, J.; Wang, F.; Bi, W.; Liu, B.; Liu, S.; Okamoto, Y. Synthesis of cellulose carbamates bearing regioselective substituents at 2, 3-and 6-positions for efficient chromatographic enantioseparation.J. Chromatogr. A2018,1572, 54−61..
Koller, H.; Rimbck, K. H.; Mannschreck, A. High-pressure liquid chromatography on triacetylcellulose. Characterization of a sorbent for the separation of enantiomers.J. Chromatogr A.1983,282, 89−94..
Percec, V.; Rudick, J. G.; Peterca, M.; Wagner, M.; Obata, M.; Mitchell, C. M.; Cho, W.-D.; Balagurusamy, V. S.; Heiney, P. A. Thermoreversiblecis-cisoidaltocis-transoidalisomerization of helical dendronized polyphenylacetylenes.J. Am. Chem. Soc.2005,127, 15257−15264..
Zhang, Y.; Lin, J.; Deng, J. Effects of cosolvents on helical substituted polyacetylene particles prepared through suspension polymerization.J. Polym. Sci., Part A: Polym. Chem.2017,55, 2670−2678..
Lee, G. C.; Tam, C. P.; Danesh-Meyer, H. V.; Myers, J. S.; Katz, L. J. Bilateral angle closure glaucoma induced by sulphonamide-derived medications.Clin. Exp. Ophthalmol.2007,35, 55−58..
Huang, J.; Zhang, P.; Chen, H.; Li, T. Preparation and evaluation of proline-based chiral columns.Anal. Chem.2005,77, 3301−3308..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution