FOLLOWUS
Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
yue.zhao@usherbrooke.ca
Published:2024-10,
Published Online:25 November 2024,
Received:16 September 2024,
Revised:10 October 2024,
Accepted:14 October 2024
Scan QR Code
Chen, Y. M.; Zhao, Y. Liquid crystalline hydrogel capable of thermally-induced dual actuation. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3251-8
Yi-Ming Chen, Yue Zhao. Liquid Crystalline Hydrogel Capable of Thermally-induced Dual Actuation. [J/OL]. Chinese Journal of Polymer Science, 2024,431-9.
Chen, Y. M.; Zhao, Y. Liquid crystalline hydrogel capable of thermally-induced dual actuation. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3251-8 DOI:
Yi-Ming Chen, Yue Zhao. Liquid Crystalline Hydrogel Capable of Thermally-induced Dual Actuation. [J/OL]. Chinese Journal of Polymer Science, 2024,431-9. DOI: 10.1007/s10118-025-3251-8.
Stimuli-responsive shape-changing materials
particularly hydrogel and liquid crystal elastomer (LCE)
have demonstrated significant potential for applications across various fields. Although intricate deformation and actuation behaviors have been obtained in either hydrogels or LCEs
they typically undergo reversible shape change only once (
e.g.
one expansion plus one contraction) during one heating/cooling cycle. Herein
we report a study of a novel liquid crystalline hydrogel (LCH) and the achievement of dual actuation in a single heating/cooling cycle by integrating the characteristics of thermoresponsive hydrogel and LCE. The dual actuation behavior arises from the reversible volume phase transition of poly(
N
-isopropylacrylamide) (PNIPAM) and the reversible order-disorder phase transition of LC mesogens in the LCH. Due to a temperature window separating the two transitions belonging to PNIPAM and LCE
LCH actuator can sequentially execute their respective actuation
thus deforming reversibly twice
during a heating/cooling cycle. The relative actuation degree of the two mechanisms is influenced by the mass ratio of PNIPAM to LCE in the LCH. Moreover
the initial shape of a bilayer actuator made with an active LCH layer and a passive polymer layer can be altered through hydration or dehydration of PNIPAM
which further modifies the dual actuation induced deformation. This work provides an example that shows the interest of developing LCH actuators.
Liquid crystalline hydrogelDual actuationThermoresponsive hydrogelLiquid crystal elastomer
Theato, P.; Sumerlin, B. S.; O'Reilly, R. K.; Epps, T.H. 3rdStimuli responsive materials.Chem. Soc. Rev.2013,42, 7055−7056..
Roy, D.; Cambre, J. N.; Sumerlin, B. S. Future perspectives and recent advances in stimuli-responsive materials.Prog. Polym. Sci.2010,35, 278−301..
Moulin, E.; Faour, L.; Carmona-Vargas, C. C.; Giuseppone, N. From molecular machines to stimuli-responsive materials.Adv. Mater.2020,32, e1906036..
Ionov, L. Hydrogel-based actuators: possibilities and limitations.Mater. Today2014,17, 494−503..
Park, N.; Kim, J. Hydrogel-based artificial muscles: overview and recent progress.Adv. Intell. Syst.2020,2, 1900135..
Lee, Y.; Song, W. J.; Sun, J. Y. Hydrogel soft robotics.Mater. Today Phys.2020,15, 100258..
Liu, J.; Jiang, L.; He, S.; Zhang, J.; Shao, W. Recent progress in PNIPAM-based multi-responsive actuators: a mini-review.Chem. Eng. J.2022,433, 133496..
Tang, L.; Wang, L.; Yang, X.; Feng, Y.; Li, Y.; Feng, W. Poly(N-isopropylacrylamide)-based smart hydrogels: design, properties and applications.Prog. Mater Sci.2021,115, 100702..
Jeon, S. J.; Hauser, A. W.; Hayward, R. C. Shape-morphing materials from stimuli-responsive hydrogel hybrids.Acc. Chem. Res.2017,50, 161−169..
Kularatne, R. S.; Kim, H.; Boothby, J. M.; Ware, T. H. Liquid crystal elastomer actuators: synthesis, alignment, and applications.J. Polym. Sci., Part B: Polym. Phys.2017,55, 395−411..
Ikeda, T.; Mamiya, J.; Yu, Y. Photomechanics of liquid-crystalline elastomers and other polymers.Angew. Chem. Int. Ed.2007,46, 506−28..
Zeng, H.; Wasylczyk, P.; Cerretti, G.; Martella, D.; Parmeggiani, C.; Wiersma, D. S. Alignment engineering in liquid crystalline elastomers: free-form microstructures with multiple functionalities.Appl. Phys. Lett.2015,106, 111902..
Hu, J.; Yu, M.; Wang, M.; Choy, K. L.; Yu, H. Design, regulation, and applications of soft actuators based on liquid-crystalline polymers and their composites.ACS Appl. Mater. Interfaces2022,14, 12951−12963..
Shang, Y.; Wang, J.; Ikeda, T.; Jiang, L. Bio-inspired liquid crystal actuator materials.J. Mater. Chem. C2019,7, 3413−3428..
Nie, Z. Z.; Wang, M.; Yang, H. Structure-induced intelligence of liquid crystal elastomers.Chem. Eur. J.2023,29, e202301027..
Bao, J.; Wang, Z.; Song, C.; Zhang, Y.; Li, Z.; Zhang, L.; Lan, R.; Yang, H. Shape-programmable liquid-crystalline polyurethane-based multimode actuators triggered by light-driven molecular motors.Adv. Mater.2023,35, e2302168..
Le, X.; Lu, W.; Zhang, J.; Chen, T. Recent progress in biomimetic anisotropic hydrogel actuators.Adv. Sci.2019,6, 1801584..
Jiao, D.; Zhu, Q. L.; Li, C. Y.; Zheng, Q.; Wu, Z. L. Programmable morphing hydrogels for soft actuators and robots: from structure designs to active functions.Acc. Chem. Res.2022,55, 1533−1545..
Huang, Y.; Xu, Y.; Bisoyi, H. K.; Liu, Z.; Wang, J.; Tao, Y.; Yang, T.; Huang, S.; Yang, H.; Li, Q. Photocontrollable elongation actuation of liquid crystal elastomer films with well-defined crease structures.Adv. Mater.2023,35, e2304378..
Xiao, Y. Y.; Jiang, Z. C.; Hou, J. B.; Zhao, Y. Desynchronized liquid crystalline network actuators with deformation reversal capability.Nat. Commun.2021,12, 624..
Zhang, Y.; Liu, K.; Liu, T.; Ni, C.; Chen, D.; Guo, J.; Liu, C.; Zhou, J.; Jia, Z.; Zhao, Q.; Pan, P.; Xie, T. Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels.Nat. Commun.2021,12, 6155..
Liu, C.; Qin, H.; Mather, P. T. Review of progress in shape-memory polymers.J. Mater. Chem.2007,17, 1543−1558..
Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding.Prog. Polym. Sci.2015,49, 79−120..
Scalet, G. Two-way and multiple-way shape memory polymers for soft robotics: an overview.Actuators2020,9, 10..
Behl, M.; Bellin, I.; Kelch, S.; Wagermaier, W.; Lendlein, A. One-step process for creating triple-shape capability of AB polymer networks.Adv. Funct. Mater.2008,19, 102−108..
Xie, T. Tunable polymer multi-shape memory effect.Nature2010,464, 267−270..
Zhao, Q.; Behl, M.; Lendlein, A. Shape-memory polymers with multiple transitions: complex actively moving polymers.Soft Matter2013,9, 1744−1755..
Kaneko, T.; Yamaoka, K.; Osada, Y.; Gong, J. P. Thermoresponsive shrinkage triggered by mesophase transition in liquid crystalline physical hydrogels.Macromolecules2004,37, 5385−5388..
Kularatne, R. S.; Kim, H.; Ammanamanchi, M.; Hayenga, H. N.; Ware, T. H. Shape-morphing chromonic liquid crystal hydrogels.Chem. Mater.2016,28, 8489−8492..
Shishmanova, I. K.; Bastiaansen, C. W.; Schenning, A. P.; Broer, D. J. Two-dimensional pH-responsive printable smectic hydrogels.Chem. Commun.2012,48, 4555−4557..
Stumpel, J. E.; Gil, E. R.; Spoelstra, A. B.; Bastiaansen, C. W. M.; Broer, D. J.; Schenning, A. P. H. J. Stimuli-responsive materials based on interpenetrating polymer liquid crystal hydrogels.Adv. Funct. Mater.2015,25, 3314−3320..
Torbati, A. H.; Mather, P. T. A hydrogel-forming liquid crystalline elastomer exhibiting soft shape memory.J. Polym. Sci., Part B: Polym. Phys.2015,54, 38−52..
Zhou,Y.; Sharma, N.; Deshmukh, P.; Lakhman, R. K.; Jain, M.; Kasi, R. M. Hierarchically structured free-standing hydrogels with liquid crystalline domains and magnetic nanoparticles as dual physical cross-linkers.J. Am. Chem. Soc.2012,134, 1630−1641..
Houben, S. J. A.; Lugger, S. J. D.; van Raak, R. J. H.; Schenning, A. P. H. J. A pH-responsive liquid crystal hydrogel actuator with calcium-induced reprogrammable shape fixing.ACS Appl. Polym. Mater.2022,4, 1298−1304..
Thomsen, D. L.; Keller, P.; Naciri, J.; Pink, R.; Jeon, H.; Shenoy, D.; Ratna, B. R. Liquid crystal elastomers with mechanicalproperties of a muscle.Macromolecules2001,34, 5868−5875..
Yao, Y.; He, E.; Xu, H.; Liu, Y.; Yang, Z.; Wei, Y.; Ji, Y. Enabling liquid crystal elastomers with tunable actuation temperature.Nat. Commun.2023,14, 3518..
Jiang, H.; Li, C.; Huang, X. Actuators based on liquid crystalline elastomer materials.Nanoscale2013,5, 5225−5240..
Lu, H. F.; Wang, M.; Chen, X. M.; Lin, B. P.; Yang, H. Interpenetrating liquid-crystal polyurethane/polyacrylate elastomer with ultrastrong mechanical property.J. Am. Chem. Soc.2019,141, 14364−14369..
Yang, R.; Zhao, Y. Non-uniform optical inscription of actuation domains in a liquid crystal polymer of uniaxial orientation: an approach to complex and programmable shape changes.Angew. Chem. Int. Ed.2017,129, 14390−14394..
Chen, Y.; Jiang, J.; Zhao, Y. Liquid crystalline hydrogel actuator with positive thermal expansion and negative order parameter of mesogens over order-disorder phase transition.Macromolecules 2024, 10.1021/acs.macromol.4c01464..
Ohm, C.; Brehmer, M.; Zentel, R. Liquid crystalline elastomers as actuators and sensors.Adv. Mater.2010,22, 3366−3387..
Cao-Luu, N. H.; Pham, Q. T.; Yao, Z. H.; Wang, F. M.; Chern, C. S. Synthesis and characterization of poly(N-isopropylacrylamide-co-acrylamide) mesoglobule core-silica shell nanoparticles.J. Colloid Interface Sci.2019,536, 536−547..
Colaco, R.; Appiah, C.; Staubitz, A. Controlling the LCST-phase transition in azobenzene-functionalized poly(N-isopropylacrlyamide) hydrogels by light.Gels2023,9, 75..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution