FOLLOWUS
a.Department of Materials Science and Engineering, School of Physics Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
b.Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, China
c.State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
d.Department of Mathematics, School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088, USA
ardekani@purdue.edu (A.A.)
huyd@bjtu.edu.cn (Y.D.H.)
Published:2024-11,
Published Online:05 December 2024,
Received:27 September 2024,
Revised:20 October 2024,
Accepted:23 October 2024
Scan QR Code
Chen, J.; Yu, R. Y.; Wang, K. Q.; Zhang, Z. Y.; Ardekani, A.; Hu, Y. D. Spherical magnetic Fe-alginate microgels fabricated by droplet-microfluidics combining with an external crosslinking approach and the study of their pH dependent Fe3+ release behaviors. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3257-2
JIE CHEN, RUN-YU YU, KAI-QI WANG, et al. Spherical Magnetic Fe-Alginate Microgels Fabricated by Droplet-Microfluidics Combining with an External Crosslinking Approach and the Study of Their pH Dependent Fe3+ Release Behaviors. [J/OL]. Chinese journal of polymer science, 2024, 431-14.
Chen, J.; Yu, R. Y.; Wang, K. Q.; Zhang, Z. Y.; Ardekani, A.; Hu, Y. D. Spherical magnetic Fe-alginate microgels fabricated by droplet-microfluidics combining with an external crosslinking approach and the study of their pH dependent Fe3+ release behaviors. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3257-2 DOI:
JIE CHEN, RUN-YU YU, KAI-QI WANG, et al. Spherical Magnetic Fe-Alginate Microgels Fabricated by Droplet-Microfluidics Combining with an External Crosslinking Approach and the Study of Their pH Dependent Fe3+ Release Behaviors. [J/OL]. Chinese journal of polymer science, 2024, 431-14. DOI: 10.1007/s10118-025-3257-2.
Due to the rapid development and potential applications of iron(III)-alginate (Fe-Alg) microgels in biomedical as well as environmental engineering
this study explores the preparation and characterization of spherical Fe-Alg microgels using droplet microfluidics combined with an external ionic crosslinking method. This study focused on the role of Fe
3+
and examined its effects on the physical/chemical properties of microgels under different ionic conditions and reduced or oxidized states. The pH-dependent release behavior of Fe
3+
from these microgels demonstrates their potential biomedical and environmental applications. Furthermore
the microgels can exhibit magnetism simply by utilizing
in situ
oxidation
which can be further used for targeted drug delivery and magnetic separation technologies.
Fe-alginate microgelsDroplet microfluidicsIn situ oxidationMagnetism
Dickson, P. M. Extraction and characterisation of alginate from brown seaweeds (Fucales, Phaeophyceae) collected from Port.J. Appl. Phycol.2011,23, 191−196..
Hu, C.; Lu, W.; Mata, A.; Nishinari, K.; Fang, Y. Ions-induced gelation of alginate: Mechanisms and applications.Int. J. Biol. Macromol.2021,177, 578−588..
Draget, K. I.; Skjåk-Bræk, G.; Stokke, B. T. Similarities and differences between alginic acid gels and ionically crosslinked alginate gels.Food Hydrocoll.2006,20, 170−175..
Iravani, S.; Varma, R. S. Alginate-based micro- and nanosystems for targeted cancer therapy.Mar Drugs.2022,20, 598..
Puscaselu, R. G.; Lobiuc, A.; Dimian, M.; Alginate, M. C. From food industry to biomedical applications and management of metabolic disorders.Polym. Adv. Technol.2020,12, 2417..
Huang, D.; Wang, J.; Nie, M.; Chen, G.; Zhao, Y. Pollen-inspired adhesive multilobe microparticles from microfluidics for intestinal drug delivery.Adv. Mater.2023,35, 2301192..
Wang, B.; Wan, Y.; Zheng, Y.; Lee, X.; Liu, T.; Yu, Z.; Huang, J.; Ok, Y. S.; Chen, J.; Gao, B. Alginate-based composites for environmental applications: a critical review.Crit. Rev. Env. Sci. Technol.2019,49, 318−356..
Saning, A.; Thanachayanont, C.; Suksai, L.; Watcharin, W.; Techasakul, S.; Chuenchom, L.; Dechtrirat, D. Green magnetic carbon/alginate biocomposite beads from iron scrap waste for efficient removal of textile dye and heavy metal.Int. J. Biol. Macromol.2024,261, 129765..
Ren, J.; Leus, K.; Morent, R.; De Geyter, N.; Van Der Voort, P.; Du Laing, G. Fe(III)-alginate and layered aluminum oxyhydroxide assisted hydro ceramsite composite for efficient removal of Se and as from high-concentration sulfate wastewater.Sep. Purif. Technol.2024,334, 126101..
Tan, J. L., Yuning; Guo, Y.; Zhou, Y.; Liao, X.; Li, D.; Lai, X.; Liu, Y. Development of alginate-based hydrogels: crosslinking strategies and biomedical applications.Int. J. Biol. Macromol.2023,239, 124275..
Cattelan, G.; Guerrero Gerbolés, A.; Foresti, R.; Pramstaller, P. P.; Rossini, A.; Miragoli, M.; Caffarra Malvezzi, C. Alginate formulations: current developments in the race for hydrogel-based cardiac regeneration.Front. Bioeng.2020,8, 414..
Rashidzadeh, B.; Shokri, E.; Mahdavinia, G. R.; Moradi, R.; Mohamadi-Aghdam, S.; Abdi, S. Preparation and characterization of antibacterial magnetic-/pH-sensitive alginate/Ag/Fe3O4hydrogel beads for controlled drug release.Int. J. Biol. Macromol.2020,154, 134−141..
Abasalizadeh, F.; Moghaddam, S. V.; Alizadeh, E.; Akbari, E.; Kashani, E.; Fazljou, S. M. B.; Torbati, M.; Akbarzadeh, A. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting.J. Biol. Eng.2020,14, 1−22..
Guo, H.; Qin, Q.; Chang, J. S.; Lee, D. J. Modified alginate materials for wastewater treatment: application prospects.Bioresour. Technol.2023,387, 129639..
Adamiak, K.; Sionkowska, A. State of innovation in alginate-based materials.Mar. Drugs.2023,21, 353..
Ozawa, F.; Ino, K.; Shiku, H.; Matsue, T. Electrochemical hydrogel lithography of calcium-alginate hydrogels for cell culture.Materials2016,9, 744..
Kavand, A.; Noverraz, F.; Gerber-Lemaire, S. Recent advances in alginate-based hydrogels for cell transplantation applications.Pharmaceutics2024,16, 469..
Roquero, D. M.; Othman, A.; Melman, A.; Katz, E. Iron (III)-cross-linked alginate hydrogels: a critical review.Mater. Adv.2022,3, 1849−1873..
Ferrari, E.; Saladini, M. Iron(III) complexing ability of carbohydrate derivatives.J. Inorg. Biochem.2004,98, 1002−1008..
Okhokhonin, A. V.; Domanskyi, S.; Filipov, Y.; Gamella, M.; Kozitsina, A. N.; Privman, V.; Katz, E. Biomolecular release from alginate-modified electrode triggered by chemical inputs processed through a biocatalytic cascade-integration of biomolecular computing and cctuation.Electroanalysis2018,30, 426−435..
Hernández, R. B.; Franco, A. P.; Yola, O. R.; Lopez-Delgado, A.; Felcman, J.; Recio, M. A. L.; Mercê, A. L. R. Coordination study of chitosan and Fe3+.J. Mol. Struct.2008,877, 89−99..
Sreeram, K. J.; Shrivastava, H. Y.; Nair, B. U. Studies on the nature of interaction of iron(III) with alginates.BBA -General Subject2004,1670, 121−125..
Kang, Y. S. Synthesis and characterization of nanometer-size Fe3O4andγ-Fe2O3particles.Chem. Mater.1996,8, 2209−2211..
Ma, P.; Xiao, C.; Li, L.; Shi, H.; Zhu, M. Facile preparation of ferromagnetic alginate-g-poly(vinyl alcohol) microparticles.Eur. Polym. J.2008,44, 3886−3889..
Xiao, C.; Ma, P.; Geng, N. Multi-responsive methylcellulose/Fe-alginate-g-PVA/PVA/Fe3O4microgels for immobilizing enzyme.Polym. Adv. Technol.2011,22, 2649−2652..
Hagberg, G. E.; Engelmann, J.; Göring, E.; Cuña, E. G.; Scheffler, K. Magnetic properties of iron-filled hydrogel clusters: a model system for quantitative susceptibility mapping with MRI.Front. Phys.2023,11, 1209505..
Park, S. J.; Lim, H. S.; Lee, Y. M.; Suh, K. D. Facile synthesis of monodisperse poly(MAA/EGDMA)/Fe3O4hydrogel microspheres with hollow structures for drug delivery systems: the hollow structure formation mechanism and effects of various metal ions on structural changes.RSC Adv.2015,5, 10081−10088..
Bruchet, M.; Mendelson, N. L.; Melman, A. Photochemical patterning of ionically cross-linked hydrogels.Processes2013,1, 153−166..
Roquero, D. M.; Bollella, P.; Melman, A.; Katz, E. Nanozyme-triggered DNA release from alginate films.ACS Appl. Bio Mater.2020,3, 3741−3750..
Churio, O.; Pizarro, F.; Valenzuela, C. Preparation and characterization of iron-alginate beads with some types of iron used in supplementation and fortification strategies.J. Food Hydrocolloids2018,74, 1−10..
Zhao, J.; Zhao, X.; Guo, B.; Ma, P. X. Multifunctional interpenetrating polymer network hydrogels based on methacrylated alginate for the delivery of small molecule drugs and sustained release of protein.Biomacromolecules2014,15, 3246−3252..
Cook, M. T.; Tzortzis, G.; Khutoryanskiy, V. V.; Charalampopoulos, D. Layer-by-layer coating of alginate matrices with chitosan-alginate for the improved survival and targeted delivery of probiotic bacteria after oral administration.J. Mater. Chem. B2013,1, 52−60..
Iglesias, O.; Rosales, E.; Pazos, M.; Sanromán, M. A. PElectro-Fenton decolourisation of dyes in an airlift continuous reactor using iron alginate beads. Envir Sci Pollut R.2012,20, 2252−2261..
Neni Zulfa Nengsih, K. J. Development of iron alginate beads by ionotropic gelation for nutritional applications.Proceeding of the 7th TICC International Conference. 2023 ..
Sugiura, S.; Oda, T.; Izumida, Y.; Aoyagi, Y.; Satake, M.; Ochiai, A.; Ohkohchi, N.; Nakajima, M. Size control of calcium alginate beads containing living cells using micro-nozzle array.Biomaterials2005,26, 3327−3331..
Chicheportiche, D.; Reach, G.In vitrokinetics of insulin release by microencapsulated rat islets: effect of the size of the microcapsules.Diabetologia1988,31, 54−57..
Choi, C. H.; Jung, J. H.; Rhee, Y. W.; Kim, D. P.; Shim, S. E.; Lee, C. S. Generation of monodisperse alginate microbeads andin situencapsulation of cell in microfluidic device.Biomed. Microdevices2007,9, 855−862..
Utech, S.; Prodanovic, R.; Mao, A. S.; Ostafe, R.; Mooney, D. J.; Weitz, D. A. Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture.Adv. Healthc. Mater.2015,4, 1628..
Huang, H.; Yu, Y.; Hu, Y.; He, X.; Usta, O. B.; Yarmush, M. L. Generation and manipulation of hydrogel microcapsules by droplet-based microfluidics for mammalian cell culture.Lab Chip.2017,17, 1913−1932..
Leblond, F. A.; Simard, G.; Henley, N.; Rocheleau, B.; Huet, P. M.; Hallé, J. P. Studies on smaller (~315 μM) microcapsules: IV. feasibility and safety of intrahepatic implantations of small alginate poly-L-Lysine microcapsules.Cell Transplant.1999,8, 327−337..
Jeddi, M. K.; Mahkam, M. Magnetic nano carboxymethyl cellulose-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery.Int. J. Biol. Macromol.2019,135, 829−838..
Gila-Vilchez, C.; Bonhome-Espinosa, A. B.; Kuzhir, P.; Zubarev, A.; Duran, J. D.; Lopez-Lopez, M. T. Rheology of magnetic alginate hydrogels.J. Rheol.2018,62, 1083−1096..
Chen, J.; Shen, H.; Heng, Y.; Wang, S.; Ardekani, A.; Yang, Y.; Hu, Y. Droplet microfluidics-assisted fabrication of shape controllable iron-alginate microgels with fluorescent property.Macromol. Rapid Comm.2024,45, 202400084..
Cascone, S.; Lamberti, G. Hydrogel-based commercial products for biomedical applications: a review.Int. J. Pharm.2020,573, 118803..
Łabowska, M. B.; Cierluk, K.; Jankowska, A. M.; Kulbacka, J.; Detyna, J.; Michalak, I. A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting.Materials2021,14, 858..
Maciel, B.; Oelschlaeger, C.; Willenbacher, N. Chain flexibility and dynamics of alginate solutions in different solvents.Colloid Polym. Sci.2020,298, 791−801..
Mørch, Ý. A.; Donati, I.; Strand, B. L.; Skjak-Braek, G. Effect of Ca2+, Ba2+, and Sr2+on alginate microbeads.Biomacromolecules2006,7, 1471−1480..
Liling, G.; Di, Z.; Jiachao, X.; Xin, G.; Xiaoting, F.; Qing, Z. Effects of ionic crosslinking on physical and mechanical properties of alginate mulching films.Carbohydr. Polym.2016,136, 259−265..
Thakur, S.; Thakur, V. K.; Arotiba, O. A. History, classification, properties and application of hydrogels: an overview.Hydrogels: Recent Advances 2018 , 29-50..
Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology.Adv. Mater.2006,18, 1345−1360..
Draget, K. I.; Taylor, C. Chemical, physical and biological properties of alginates and their biomedical implications.Food Hydrocoll.2011,25, 251−256..
Kuo, C. K.; Ma, P. X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties.Biomaterials2001,22, 511−521..
Lee, K. Y.; Mooney, D. J. Alginate: properties and biomedical applications.Prog. Polym. Sci.2012,37, 106−126..
Jin, Z.; Güven, G. r.; Bocharova, V.; Halámek, J.; Tokarev, I.; Minko, S.; Melman, A.; Mandler, D.; Katz, E. Electrochemically controlled drug-mimicking protein release from iron-alginate thin-films associated with an electrode.ACS Appl. Bio Mater.2012,4, 466−475..
Pignatello, J. J.; Oliveros, E.; MacKay, A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry.Crit. Rev. Env. Sci. Tec.2006,36, 1−84..
Smith, A. R. Color gamut transformpairs.ACM Siggraph Comput Graph.1978,12, 12−19..
Foley, J. D.; inComputer graphics: principles and practice, Vol. 12110, Addison-Wesley Professional, Boston, 1996 ..
Tomić, S. L.; Babić Radić, M. M.; Vuković, J. S.; Filipović, V. V.; Nikodinovic-Runic, J.; Vukomanović, M. Alginate-based hydrogels and scaffolds for biomedical applications.Mar. Drugs.2023,21, 177..
Alkhayer, G. Alginate metal complexes and their application.Propert Appl. Alg. 2019 ..
Shi, X.; Zheng, Y.; Wang, G.; Lin, Q.; Fan, J. pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery.RSC Adv. 2014 ,4, 47056-47065..
Gupta, P.; Vermani, K.; Garg, S. Hydrogels: from controlled release to pH-responsive drug delivery.Drug Discov Today.2002,7, 569−579..
Ciarleglio, G.; Russo, T.; Toto, E.; Santonicola, M. G. Fabrication of alginate/ozoile gel microspheres by electrospray process.Gels.2024,10, 52..
Remondetto, G. E.; Beyssac, E.; Subirade, M.; Chemistry, F. Iron availability from whey protein hydrogels: anin vitrostudy.J. Agric.2004,52, 8137−8143..
Chen, F.; Ilyas, N.; Liu, X.; Li, Z.; Yan, S.; Fu, H. Size effect of Fe3O4nanoparticles on magnetism and dispersion stability of magnetic nanofluid.Front. Energy Res.2021,9, 780008..
Hall, J. E., inPocket Companion to Guyton & Hall Textbook of Medical Physiology E-Book. Elsevier Health Sciences: 2015 ..
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution