a.Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
b.College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
hongbo.zeng@ualberta.ca
Scan for full text
Meng Wu, Qiong-Yao Peng, Lin-Bo Han, et al. Self-healing Hydrogels and Underlying Reversible Intermolecular Interactions. [J]. Chinese Journal of Polymer Science 39(10):1246-1261(2021)
Meng Wu, Qiong-Yao Peng, Lin-Bo Han, et al. Self-healing Hydrogels and Underlying Reversible Intermolecular Interactions. [J]. Chinese Journal of Polymer Science 39(10):1246-1261(2021) DOI: 10.1007/s10118-021-2631-y.
Self-healing hydrogels have attracted growing attention over the past decade due to their biomimetic structure, biocompatibility, as well as enhanced lifespan and reliability, thereby have been widely used in various biomedical, electrical and environmental engineering applications. This feature article has reviewed our recent progress in self-healing hydrogels derived from mussel-inspired interactions, multiple hydrogen-bonding functional groups such as 2-ureido-4[1,H,]-pyrimidinone (UPy), dynamic covalent bonds (,e.g., Schiff base reactions and boronic ester bonds). The underlying molecular basics of these interactions, hydrogel preparation principles, and corresponding performances and applications are introduced. The underlying reversible intermolecular interaction mechanisms in these hydrogels were investigated using nanomechanical techniques such as surface forces apparatus (SFA) and atomic force microscopy (AFM), providing fundamental insights into the self-healing mechanisms of the hydrogels. The remaining challenging issues and perspectives in this rapidly developing research area are also discussed.
Self-healing hydrogelsMussel-inspired InteractionMultiple hydrogen-bondingDynamic covalent bondsIntermolecular forces
Ahmed, E. M. . Hydrogel: Preparation, characterization, and applications: a review . J. Adv. Res. , 2015 . 6 105 -121 . DOI:10.1016/j.jare.2013.07.006http://doi.org/10.1016/j.jare.2013.07.006 .
Ganji, F.; Vasheghani, F. S.; Vasheghani, F. E. . Theoretical description of hydrogel swelling: a review . Iran. Polym. J. , 2010 . 19 375 -398. .
Kopeček, J. . Hydrogel biomaterials: a smart future? . Biomaterials , 2007 . 28 5185 -5192 . DOI:10.1016/j.biomaterials.2007.07.044http://doi.org/10.1016/j.biomaterials.2007.07.044 .
Billiet, T.; Vandenhaute, M.; Schelfhout, J.; Van Vlierberghe, S.; Dubruel, P. . A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering . Biomaterials , 2012 . 33 6020 -6041 . DOI:10.1016/j.biomaterials.2012.04.050http://doi.org/10.1016/j.biomaterials.2012.04.050 .
Vashist, A.; Vashist, A.; Gupta, Y.; Ahmad, S. . Recent advances in hydrogel based drug delivery systems for the human body . J. Mater. Chem. B , 2014 . 2 147 -166 . DOI:10.1039/C3TB21016Bhttp://doi.org/10.1039/C3TB21016B .
Kamoun, E. A.; Kenawy, E.-R. S.; Chen, X. . A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings . J. Adv. Res. , 2017 . 8 217 -233 . DOI:10.1016/j.jare.2017.01.005http://doi.org/10.1016/j.jare.2017.01.005 .
Gupta, P.; Vermani, K.; Garg, S. . Hydrogels: from controlled release to pH-responsive drug delivery . Drug Discov. Today , 2002 . 7 569 -579. .
Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. . Hydrogels in biology and medicine: from molecular principles to bionanotechnology . Adv. Mater. , 2006 . 18 1345 -1360 . DOI:10.1002/adma.200501612http://doi.org/10.1002/adma.200501612 .
Hoffman, A. S. . Hydrogels for biomedical applications . Adv. Drug Deliv. Rev. , 2012 . 64 18 -23 . DOI:10.1016/j.addr.2012.09.010http://doi.org/10.1016/j.addr.2012.09.010 .
Van Vlierberghe, S.; Dubruel, P.; Schacht, E. . Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review . Biomacromolecules , 2011 . 12 1387 -1408 . DOI:10.1021/bm200083nhttp://doi.org/10.1021/bm200083n .
Zhu, J.; Marchant, R. E. . Design properties of hydrogel tissue-engineering scaffolds . Expert Rev. Med. Devices , 2011 . 8 607 -626 . DOI:10.1586/erd.11.27http://doi.org/10.1586/erd.11.27 .
Dhivya, S.; Padma, V. V.; Santhini, E. . Wound dressings - a review . BioMedicine , 2015 . 5 22 -22 . DOI:10.7603/s40681-015-0022-9http://doi.org/10.7603/s40681-015-0022-9 .
Sirousazar, M.; Yari, M. . Dehydration kinetics of polyvinyl alcohol hydrogel wound dressings during wound healing process . Chinese J. Polym. Sci. , 2010 . 28 573 -580 . DOI:10.1007/s10118-010-9099-5http://doi.org/10.1007/s10118-010-9099-5 .
Yang, X.; Li, P.; Tang, W.; Du, S.; Yu, M.; Lu, H.; Tan, H.; Xing, X. . A facile injectable carbon dot/oxidative polysaccharide hydrogel with potent self-healing and high antibacterial activity . Carbohydr. Polym. , 2021 . 251 117040 DOI:10.1016/j.carbpol.2020.117040http://doi.org/10.1016/j.carbpol.2020.117040 .
Chen, L.; Li, X. Q.; Cao, L. P.; Li, X. L.; Meng, J. R.; Dong, J.; Yu, L.; Ding, J. D. . An injectable hydrogel with or without drugs for prevention of epidural scar adhesion after laminectomy in rats . Chinese J. Polym. Sci. , 2016 . 34 147 -163 . DOI:10.1007/s10118-016-1740-5http://doi.org/10.1007/s10118-016-1740-5 .
Zhu, F. B.; Yu, H. C.; Lei, W. X.; Ren, K. F.; Qian, J.; Wu, Z. L.; Zheng, Q. . Tough polyion complex hydrogel films of natural polysaccharides . Chinese J. Polym. Sci. , 2017 . 35 1276 -1285 . DOI:10.1007/s10118-017-1977-7http://doi.org/10.1007/s10118-017-1977-7 .
Yuk, H.; Lu, B.; Zhao, X. . Hydrogel bioelectronics . Chem. Soc. Rev. , 2019 . 48 1642 -1667 . DOI:10.1039/C8CS00595Hhttp://doi.org/10.1039/C8CS00595H .
Liu, Y.; Liu, J.; Chen, S.; Lei, T.; Kim, Y.; Niu, S.; Wang, H.; Wang, X.; Foudeh, A. M.; Tok, J. B. H. . Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation . Nat. Biomed. Eng. , 2019 . 3 58 -68 . DOI:10.1038/s41551-018-0335-6http://doi.org/10.1038/s41551-018-0335-6 .
Wang, C.; Wang, C.; Huang, Z.; Xu, S. . Materials and structures toward soft electronics . Adv. Mater. , 2018 . 30 1801368 DOI:10.1002/adma.201801368http://doi.org/10.1002/adma.201801368 .
Lai, Y. C.; Wu, H. M.; Lin, H. C.; Chang, C. L.; Chou, H. H.; Hsiao, Y. C.; Wu, Y. C. . Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins . Adv. Funct. Mater. , 2019 . 29 1904626 DOI:10.1002/adfm.201904626http://doi.org/10.1002/adfm.201904626 .
Kim, C. C.; Lee, H. H.; Oh, K. H.; Sun, J. Y. . Y. Highly stretchable, transparent ionic touch panel . Science , 2016 . 353 682 -687 . DOI:10.1126/science.aaf8810http://doi.org/10.1126/science.aaf8810 .
Peng, Q.; Chen, J.; Wang, T.; Peng, X.; Liu, J.; Wang, X.; Wang, J.; Zeng, H. . Recent advances in designing conductive hydrogels for flexible electronics . InfoMat , 2020 . 2 843 -865 . DOI:10.1002/inf2.12113http://doi.org/10.1002/inf2.12113 .
Sun, X.; Yao, F.; Li, J. . Nanocomposite hydrogel-based strain and pressure sensors: a review . J. Mater. Chem. A , 2020 . 8 18605 -18623 . DOI:10.1039/D0TA06965Ehttp://doi.org/10.1039/D0TA06965E .
Wang, Z.; Cong, Y.; Fu, J. . Stretchable and tough conductive hydrogels for flexible pressure and strain sensors . J. Mater. Chem. B , 2020 . 8 3437 -3459 . DOI:10.1039/C9TB02570Ghttp://doi.org/10.1039/C9TB02570G .
Ionov, L. . Hydrogel-based actuators: possibilities and limitations . Mater. Today , 2014 . 17 494 -503 . DOI:10.1016/j.mattod.2014.07.002http://doi.org/10.1016/j.mattod.2014.07.002 .
Wang, J. J.; Zhang, Q.; Ji, X. X.; Liu, L. B. . Highly stretchable, compressible, adhesive, conductive self-healing composite hydrogels with sensor capacity . Chinese J. Polym. Sci. , 2020 . 38 1221 -1229 . DOI:10.1007/s10118-020-2472-0http://doi.org/10.1007/s10118-020-2472-0 .
van Tran, V.; Park, D.; Lee, Y. C. . Hydrogel applications for adsorption of contaminants in water and wastewater treatment . Environ. Sci. Pollut. Res. , 2018 . 25 24569 -24599 . DOI:10.1007/s11356-018-2605-yhttp://doi.org/10.1007/s11356-018-2605-y .
Guo, H.; Jiao, T.; Zhang, Q.; Guo, W.; Peng, Q.; Yan, X. . Preparation of graphene oxide-based hydrogels as efficient dye adsorbents for wastewater treatment . Nanoscale Res. Lett. , 2015 . 10 1 -10 . DOI:10.1186/1556-276X-10-1http://doi.org/10.1186/1556-276X-10-1 .
Pakdel, P. M.; Peighambardoust, S. J. . M.; Peighambardoust, S. J. Review on recent progress in chitosan-based hydrogels for wastewater treatment application . Carbohydr. Polym. , 2018 . 201 264 -279 . DOI:10.1016/j.carbpol.2018.08.070http://doi.org/10.1016/j.carbpol.2018.08.070 .
Pakdel, P. M.; Peighambardoust, S. J. . M.; Peighambardoust, S. J. A review on acrylic based hydrogels and their applications in wastewater treatment . J. Environ. Manage. , 2018 . 217 123 -143 . DOI:10.1016/j.jenvman.2018.03.076http://doi.org/10.1016/j.jenvman.2018.03.076 .
Zhang, P. B.; Tang, A. Q.; Wang, Z. H.; Lu, J. Y.; Zhu, B. K.; Zhu, L. P. . Tough poly(L-DOPA)-containing double network hydrogel beads with high capacity of dye adsorption . Chinese J. Polym. Sci. , 2018 . 36 1251 -1261 . DOI:10.1007/s10118-018-2163-2http://doi.org/10.1007/s10118-018-2163-2 .
Hager, M. D. Self-healing materials. in Handbook of Solid State Chemistry. Wiley-VCH VerlagGmbH&Co. KGaA 2017, 201−225.
Taylor, D. L.; in het Panhuis, M. . Self-healing hydrogels . Adv. Mater. , 2016 . 28 9060 -9093 . DOI:10.1002/adma.201601613http://doi.org/10.1002/adma.201601613 .
Wang, W.; Narain, R.; Zeng, H. . Rational design of self-healing tough hydrogels: a mini review . Front. Chem. , 2018 . 6 497 DOI:10.3389/fchem.2018.00497http://doi.org/10.3389/fchem.2018.00497 .
Wang, W.; Narain, R.; Zeng, H. Chapter 10 - Hydrogels. In Polymer Science and Nanotechnology, Narain, R., Ed. Elsevier: 2020; pp 203−244.
Kilic, R.; Sanyal, A. Self-healing hydrogels based on reversible covalent linkages: a survey of dynamic chemical bonds in network formation. In Self-healing and self-recovering hydrogels, Creton, C.; Okay, O., Eds. Springer International Publishing: Cham, 2020; pp 243−294.
Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J. L.; Sanders, J. K.; Otto, S. . Dynamic combinatorial chemistry . Chem. Rev. , 2006 . 106 3652 -3711 . DOI:10.1021/cr020452phttp://doi.org/10.1021/cr020452p .
Wang, P.; Huang, C.; Xing, Y.; Fang, W.; Ren, J.; Yu, H.; Wang, G. . NIR-light- and pH-responsive graphene oxide hybrid cyclodextrin-based supramolecular hydrogels . Langmuir , 2019 . 35 1021 -1031 . DOI:10.1021/acs.langmuir.8b03689http://doi.org/10.1021/acs.langmuir.8b03689 .
Israelachvili, J. N.; Adams, G. E. . Direct measurement of long range forces between two mica surfaces in aqueous KNO3 solutions . Nature , 1976 . 262 774 -776 . DOI:10.1038/262774a0http://doi.org/10.1038/262774a0 .
Tabor, D.; Winterton, R. . The direct measurement of normal and retarded van der Waals forces . Proc. Math. Phys. Eng. Sci. , 1969 . 312 435 -450. .
Lin, Q.; Gourdon, D.; Sun, C.; Holten-Andersen, N.; Anderson, T. H.; Waite, J. H.; Israelachvili, J. N. . Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3 . Proc. Natl. Acad. Sci. , 2007 . 104 3782 -3786 . DOI:10.1073/pnas.0607852104http://doi.org/10.1073/pnas.0607852104 .
Israelachvili, J. N.; McGuiggan, P. M. . Adhesion and short-range forces between surfaces. Part I: New apparatus for surface force measurements . J. Mater. Res. , 1990 . 5 2223 -2231 . DOI:10.1557/JMR.1990.2223http://doi.org/10.1557/JMR.1990.2223 .
Helm, C. A.; Knoll, W.; Israelachvili, J. N. . Measurement of ligand-receptor interactions . Proc. Natl. Acad. Sci. , 1991 . 88 8169 -8173 . DOI:10.1073/pnas.88.18.8169http://doi.org/10.1073/pnas.88.18.8169 .
Li, L.; Zeng, H. . Marine mussel adhesion and bio-inspired wet adhesives . Biotribology , 2016 . 5 44 -51 . DOI:10.1016/j.biotri.2015.09.004http://doi.org/10.1016/j.biotri.2015.09.004 .
Israelachvili, J.; Min, Y.; Akbulut, M.; Alig, A.; Carver, G.; Greene, W.; Kristiansen, K.; Meyer, E.; Pesika, N.; Rosenberg, K. . Recent advances in the surface forces apparatus (SFA) technique . Rep. Prog. Phys. , 2010 . 73 036601 DOI:10.1088/0034-4885/73/3/036601http://doi.org/10.1088/0034-4885/73/3/036601 .
Zeng, H.; Hwang, D. S.; Israelachvili, J. N.; Waite, J. H. . Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water . Proc. Natl. Acad. Sci. , 2010 . 107 12850 -12853 . DOI:10.1073/pnas.1007416107http://doi.org/10.1073/pnas.1007416107 .
Zeng, H.; Tian, Y.; Anderson, T. H.; Tirrell, M.; Israelachvili, J. N. . New SFA techniques for studying surface forces and thin film patterns induced by electric fields . Langmuir , 2008 . 24 1173 -1182 . DOI:10.1021/la7017242http://doi.org/10.1021/la7017242 .
Meyer, E.; Heinzelmann, H.; Grütter, P.; Jung, T.; Hidber, H. R.; Rudin, H.; Güntherodt, H. J. . Atomic force microscopy for the study of tribology and adhesion . Thin Solid Films , 1989 . 181 527 -544 . DOI:10.1016/0040-6090(89)90522-1http://doi.org/10.1016/0040-6090(89)90522-1 .
Cappella, B.; Dietler, G. . Force-distance curves by atomic force microscopy . Surf. Sci. Rep. , 1999 . 34 1 -104 . DOI:10.1016/S0167-5729(99)00003-5http://doi.org/10.1016/S0167-5729(99)00003-5 .
Butt, H. J.; Jaschke, M.; Ducker, W. . Measuring surface forces in aqueous electrolyte solution with the atomic force microscope . Bioelectrochem. Bioenerg. , 1995 . 38 191 -201 . DOI:10.1016/0302-4598(95)01800-Thttp://doi.org/10.1016/0302-4598(95)01800-T .
Weisenhorn, A.; Hansma, P.; Albrecht, T.; Quate, C. . Forces in atomic force microscopy in air and water . Appl. Phys. Lett. , 1989 . 54 2651 -2653 . DOI:10.1063/1.101024http://doi.org/10.1063/1.101024 .
Kappl, M.; Butt, H. J. . The colloidal probe technique and its application to adhesion force measurements . Part. Part. Syst. Char. , 2002 . 19 129 -143 . DOI:10.1002/1521-4117(200207)19:3<129::AID-PPSC129>3.0.CO;2-Ghttp://doi.org/10.1002/1521-4117(200207)19:3<129::AID-PPSC129>3.0.CO;2-G .
Xie, L.; Gong, L.; Zhang, J.; Han, L.; Xiang, L.; Chen, J.; Liu, J.; Yan, B.; Zeng, H. . A wet adhesion strategy via synergistic cation–π and hydrogen bonding interactions of antifouling zwitterions and mussel-inspired binding moieties . J. Mater. Chem. A , 2019 . 7 21944 -21952 . DOI:10.1039/C9TA08152Fhttp://doi.org/10.1039/C9TA08152F .
Cui, X.; Liu, J.; Xie, L.; Huang, J.; Liu, Q.; Israelachvili, J. N.; Zeng, H. . Modulation of hydrophobic interaction by mediating surface nanoscale structure and chemistry, not monotonically by hydrophobicity . Angew. Chem. Int. Ed. , 2018 . 57 11903 -11908 . DOI:10.1002/anie.201805137http://doi.org/10.1002/anie.201805137 .
Shi, C.; Cui, X.; Xie, L.; Liu, Q.; Chan, D. Y. C.; Israelachvili, J. N.; Zeng, H. . Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity . ACS Nano , 2015 . 9 95 -104 . DOI:10.1021/nn506601jhttp://doi.org/10.1021/nn506601j .
Xie, L.; Shi, C.; Cui, X.; Zeng, H. . Surface forces and interaction mechanisms of emulsion drops and gas bubbles in complex fluids . Langmuir , 2017 . 33 3911 -3925 . DOI:10.1021/acs.langmuir.6b04669http://doi.org/10.1021/acs.langmuir.6b04669 .
Zeng, H. Polymer adhesion, friction, and lubrication. John Wiley & Sons: 2013.
Waite, J. H. . Nature's underwater adhesive specialist . Int. J. Adhes. Adhes. , 1987 . 7 9 -14 . DOI:10.1016/0143-7496(87)90048-0http://doi.org/10.1016/0143-7496(87)90048-0 .
Waite, J. H. . Adhesion in byssally attached bivalves . Biol. Rev. , 1983 . 58 209 -231. .
Lee, B. P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H. . Mussel-inspired adhesives and coatings . Annu. Rev. Mater. Res. , 2011 . 41 99 -132 . DOI:10.1146/annurev-matsci-062910-100429http://doi.org/10.1146/annurev-matsci-062910-100429 .
Waite, J. H. The formation of mussel byssus: anatomy of a natural manufacturing process. In Structure, cellular synthesis and assembly of biopolymers, Case, S. T., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 1992; pp 27−54.
Harrington, M. J.; Waite, J. H. . Holdfast heroics: comparing the molecular and mechanical properties of Mytilus californianus byssal threads . J. Exp. Biol. , 2007 . 210 4307 -4318 . DOI:10.1242/jeb.009753http://doi.org/10.1242/jeb.009753 .
Li, L.; Smitthipong, W.; Zeng, H. . Mussel-inspired hydrogels for biomedical and environmental applications . Polym. Chem. , 2015 . 6 353 -358 . DOI:10.1039/C4PY01415Dhttp://doi.org/10.1039/C4PY01415D .
Yu, M.; Hwang, J.; Deming, T. J. . J. Role of l-3,4-dihydroxyphenylalanine in mussel adhesive proteins . J. Am. Chem. Soc. , 1999 . 121 5825 -5826 . DOI:10.1021/ja990469yhttp://doi.org/10.1021/ja990469y .
Waite, J. H.; Tanzer, M. L. . The bioadhesive of Mytilus byssus: a protein containing L-DOPA . Biochem. Biophys. Res. Commun. , 1980 . 96 1554 -1561 . DOI:10.1016/0006-291X(80)91351-0http://doi.org/10.1016/0006-291X(80)91351-0 .
WAITE, J. H.; TANZER, M. L. . Polyphenolic substance of Mytilus edulis: novel adhesive containing L-Dopa and hydroxyproline . Science , 1981 . 212 1038 -1040 . DOI:10.1126/science.212.4498.1038http://doi.org/10.1126/science.212.4498.1038 .
Lu, Q.; Hwang, D. S.; Liu, Y.; Zeng, H. . Molecular interactions of mussel protective coating protein, mcfp-1, from Mytilus californianus . Biomaterials , 2012 . 33 1903 -1911 . DOI:10.1016/j.biomaterials.2011.11.021http://doi.org/10.1016/j.biomaterials.2011.11.021 .
Lu, Q.; Oh, D. X.; Lee, Y.; Jho, Y.; Hwang, D. S.; Zeng, H. . Nanomechanics of cation–π interactions in aqueous solution . Angew. Chem. Int. Ed. , 2013 . 52 3944 -3948 . DOI:10.1002/anie.201210365http://doi.org/10.1002/anie.201210365 .
Zhang, C.; Wu, B.; Zhou, Y.; Zhou, F.; Liu, W.; Wang, Z. . Mussel-inspired hydrogels: from design principles to promising applications . Chem. Soc. Rev. , 2020 . 49 3605 -3637 . DOI:10.1039/C9CS00849Ghttp://doi.org/10.1039/C9CS00849G .
Bandara, N.; Zeng, H.; Wu, J. . Marine mussel adhesion: biochemistry, mechanisms, and biomimetics . J. Adhes. Sci. Technol. , 2013 . 27 2139 -2162 . DOI:10.1080/01694243.2012.697703http://doi.org/10.1080/01694243.2012.697703 .
Zhang, J.; Xiang, L.; Yan, B.; Zeng, H. . Nanomechanics of anion−π interaction in aqueous solution . J. Am. Chem. Soc. , 2020 . 142 1710 -1714 . DOI:10.1021/jacs.9b11552http://doi.org/10.1021/jacs.9b11552 .
Xiang, L.; Zhang, J.; Wang, W.; Gong, L.; Zhang, L.; Yan, B.; Zeng, H. . Nanomechanics of π-cation-π interaction with implications for bio-inspired wet adhesion . Acta Biomater. , 2020 . 117 294 -301 . DOI:10.1016/j.actbio.2020.09.043http://doi.org/10.1016/j.actbio.2020.09.043 .
Han, L.; Liu, K.; Wang, M.; Wang, K.; Fang, L.; Chen, H.; Zhou, J.; Lu, X. . Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance . Adv. Funct. Mater. , 2018 . 28 1704195 DOI:10.1002/adfm.201704195http://doi.org/10.1002/adfm.201704195 .
Brubaker, C. E.; Messersmith, P. B. . Enzymatically degradable mussel-inspired adhesive hydrogel . Biomacromolecules , 2011 . 12 4326 -4334 . DOI:10.1021/bm201261dhttp://doi.org/10.1021/bm201261d .
Han, L.; Lu, X.; Liu, K.; Wang, K.; Fang, L.; Weng, L. T.; Zhang, H.; Tang, Y.; Ren, F.; Zhao, C.; Sun, G.; Liang, R.; Li, Z. . Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization . ACS Nano , 2017 . 11 2561 -2574 . DOI:10.1021/acsnano.6b05318http://doi.org/10.1021/acsnano.6b05318 .
Li, L.; Yan, B.; Yang, J.; Chen, L.; Zeng, H. . Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property . Adv. Mater. , 2015 . 27 1294 -1299 . DOI:10.1002/adma.201405166http://doi.org/10.1002/adma.201405166 .
Holten-Andersen, N.; Harrington, M. J.; Birkedal, H.; Lee, B. P.; Messersmith, P. B.; Lee, K. Y. C.; Waite, J. H. . pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli . Proc. Natl. Acad. Sci. , 2011 . 108 2651 -2655 . DOI:10.1073/pnas.1015862108http://doi.org/10.1073/pnas.1015862108 .
Li, L.; Yan, B.; Yang, J.; Huang, W.; Chen, L.; Zeng, H. . Injectable self-healing hydrogel with antimicrobial and antifouling properties . ACS Appl. Mater. Interfaces , 2017 . 9 9221 -9225 . DOI:10.1021/acsami.6b16192http://doi.org/10.1021/acsami.6b16192 .
Fullenkamp, D. E.; Rivera, J. G.; Gong, Y. K.; Lau, K. H. A.; He, L.; Varshney, R.; Messersmith, P. B. . Mussel-inspired silver-releasing antibacterial hydrogels . Biomaterials , 2012 . 33 3783 -3791 . DOI:10.1016/j.biomaterials.2012.02.027http://doi.org/10.1016/j.biomaterials.2012.02.027 .
Liu, S. Q.; Yang, C.; Huang, Y.; Ding, X.; Li, Y.; Fan, W. M.; Hedrick, J. L.; Yang, Y. Y. . Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly(ethylene glycol) via Michael addition . Adv. Mater. , 2012 . 24 6484 -6489 . DOI:10.1002/adma.201202225http://doi.org/10.1002/adma.201202225 .
Cheng, H.; Yue, K.; Kazemzadeh-Narbat, M.; Liu, Y.; Khalilpour, A.; Li, B.; Zhang, Y. S.; Annabi, N.; Khademhosseini, A. . Mussel-inspired multifunctional hydrogel coating for prevention of infections and enhanced osteogenesis . ACS Appl. Mater. Interfaces , 2017 . 9 11428 -11439 . DOI:10.1021/acsami.6b16779http://doi.org/10.1021/acsami.6b16779 .
Li, Q.; Barrett, D. G.; Messersmith, P. B.; Holten-Andersen, N. . B.; Holten-Andersen, N. Controlling hydrogel mechanics via bio-inspired polymer–nanoparticle bond dynamics . ACS Nano , 2016 . 10 1317 -1324 . DOI:10.1021/acsnano.5b06692http://doi.org/10.1021/acsnano.5b06692 .
Israelachvili, J. N. . Thin film studies using multiple-beam interferometry . J. Colloid Interface Sci. , 1973 . 44 259 -272 . DOI:10.1016/0021-9797(73)90218-Xhttp://doi.org/10.1016/0021-9797(73)90218-X .
Hwang, D. S.; Zeng, H.; Lu, Q.; Israelachvili, J.; Waite, J. H. . Adhesion mechanism in a DOPA-deficient foot protein from green mussels . Soft Matter , 2012 . 8 5640 -5648 . DOI:10.1039/c2sm25173fhttp://doi.org/10.1039/c2sm25173f .
Kim, S.; Huang, J.; Lee, Y.; Dutta, S.; Yoo, H. Y.; Jung, Y. M.; Jho, Y.; Zeng, H.; Hwang, D. S. . Complexation and coacervation of like-charged polyelectrolytes inspired by mussels . Proc. Natl. Acad. Sci. , 2016 . 113 E847 -E853 . DOI:10.1073/pnas.1521521113http://doi.org/10.1073/pnas.1521521113 .
Kim, S.; Yoo, H. Y.; Huang, J.; Lee, Y.; Park, S.; Park, Y.; Jin, S.; Jung, Y. M.; Zeng, H.; Hwang, D. S.; Jho, Y. . Salt triggers the simple coacervation of an underwater adhesive when cations meet aromatic π electrons in seawater . ACS Nano , 2017 . 11 6764 -6772 . DOI:10.1021/acsnano.7b01370http://doi.org/10.1021/acsnano.7b01370 .
Fan, H.; Wang, J.; Tao, Z.; Huang, J.; Rao, P.; Kurokawa, T.; Gong, J. P. . Adjacent cationic–aromatic sequences yield strong electrostatic adhesion of hydrogels in seawater . Nat. Commun. , 2019 . 10 1 -8 . DOI:10.1038/s41467-018-07882-8http://doi.org/10.1038/s41467-018-07882-8 .
Ahn, B. K.; Lee, D. W.; Israelachvili, J. N.; Waite, J. H. . Surface-initiated self-healing of polymers in aqueous media . Nat. Mater. , 2014 . 13 867 -872 . DOI:10.1038/nmat4037http://doi.org/10.1038/nmat4037 .
Han, L.; Gong, L.; Chen, J.; Zhang, J.; Xiang, L.; Zhang, L.; Wang, Q.; Yan, B.; Zeng, H. . Universal mussel-inspired ultrastable surface-anchoring strategy via adaptive synergy of catechol and cations . ACS Appl. Mater. Interfaces , 2018 . 10 2166 -2173 . DOI:10.1021/acsami.7b15756http://doi.org/10.1021/acsami.7b15756 .
Sherrington, D. C.; Taskinen, K. A. . Self-assembly in synthetic macromolecular systems multiple hydrogen bonding interactions . Chem. Soc. Rev. , 2001 . 30 83 -93 . DOI:10.1039/b008033khttp://doi.org/10.1039/b008033k .
Chen, J.; Yan, B.; Wang, X.; Huang, Q.; Thundat, T.; Zeng, H. . Core cross-linked double hydrophilic block copolymer micelles based on multiple hydrogen-bonding interactions . Polym. Chem. , 2017 . 8 3066 -3073 . DOI:10.1039/C7PY00210Fhttp://doi.org/10.1039/C7PY00210F .
Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P. . Supramolecular polymers . Chem. Rev. , 2001 . 101 4071 -4098 . DOI:10.1021/cr990125qhttp://doi.org/10.1021/cr990125q .
Beijer, F. H.; Sijbesma, R. P.; Kooijman, H.; Spek, A. L.; Meijer, E. . Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding . J. Am. Chem. Soc. , 1998 . 120 6761 -6769 . DOI:10.1021/ja974112ahttp://doi.org/10.1021/ja974112a .
Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J.; Hirschberg, J. K.; Lange, R. F.; Lowe, J. K.; Meijer, E. . Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding . Science , 1997 . 278 1601 -1604 . DOI:10.1126/science.278.5343.1601http://doi.org/10.1126/science.278.5343.1601 .
Faghihnejad, A.; Feldman, K. E.; Yu, J.; Tirrell, M. V.; Israelachvili, J. N.; Hawker, C. J.; Kramer, E. J.; Zeng, H. . Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups . Adv. Funct. Mater. , 2014 . 24 2322 -2333 . DOI:10.1002/adfm.201303013http://doi.org/10.1002/adfm.201303013 .
Chen, J.; Liu, J.; Thundat, T.; Zeng, H. . Polypyrrole-doped conductive supramolecular elastomer with stretchability, rapid self-healing, and adhesive property for flexible electronic sensors . ACS Appl. Mater. Interfaces , 2019 . 11 18720 -18729 . DOI:10.1021/acsami.9b03346http://doi.org/10.1021/acsami.9b03346 .
Zhu, B.; Jasinski, N.; Benitez, A.; Noack, M.; Park, D.; Goldmann, A. S.; Barner-Kowollik, C.; Walther, A. . Hierarchical nacre mimetics with synergistic mechanical properties by control of molecular interactions in self-healing polymers . Angew. Chem. Int. Ed. , 2015 . 54 8653 -8657 . DOI:10.1002/anie.201502323http://doi.org/10.1002/anie.201502323 .
Zhou, B.; He, D.; Hu, J.; Ye, Y.; Peng, H.; Zhou, X.; Xie, X.; Xue, Z. . A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries . J. Mater. Chem. A , 2018 . 6 11725 -11733 . DOI:10.1039/C8TA01907Jhttp://doi.org/10.1039/C8TA01907J .
Cui, J.; del Campo, A. . Multivalent H-bonds for self-healing hydrogels . Chem. Commun. , 2012 . 48 9302 -9304 . DOI:10.1039/c2cc34701fhttp://doi.org/10.1039/c2cc34701f .
Hou, S.; Wang, X.; Park, S.; Jin, X.; Ma, P. X. . Rapid self-integrating, injectable hydrogel for tissue complex regeneration . Adv. Healthc. Mater. , 2015 . 4 1491 -1495 . DOI:10.1002/adhm.201500093http://doi.org/10.1002/adhm.201500093 .
Jeon, I.; Cui, J.; Illeperuma, W. R.; Aizenberg, J.; Vlassak, J. J. . Extremely stretchable and fast self-healing hydrogels . Adv. Mater. , 2016 . 28 4678 -4683 . DOI:10.1002/adma.201600480http://doi.org/10.1002/adma.201600480 .
Chen, J.; Peng, Q.; Thundat, T.; Zeng, H. . Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics . Chem. Mater. , 2019 . 31 4553 -4563 . DOI:10.1021/acs.chemmater.9b01239http://doi.org/10.1021/acs.chemmater.9b01239 .
Chen, J.; Wu, M.; Gong, L.; Zhang, J.; Yan, B.; Liu, J.; Zhang, H.; Thundat, T.; Zeng, H. . Mechanistic understanding and nanomechanics of multiple hydrogen-bonding interactions in aqueous environment . J. Phys. Chem. C , 2019 . 123 4540 -4548. .
Söntjens, S. H.; Sijbesma, R. P.; van Genderen, M. H.; Meijer, E. . Stability and lifetime of quadruply hydrogen bonded 2-ureido-4 [1H]-pyrimidinone dimers . J. Am. Chem. Soc. , 2000 . 122 7487 -7493 . DOI:10.1021/ja000435mhttp://doi.org/10.1021/ja000435m .
Sun, H.; Lee, H. H.; Blakey, I.; Dargaville, B.; Chirila, T. V.; Whittaker, A. K.; Smith, S. C. . Multiple hydrogen-bonded complexes based on 2-ureido-4[1H]-pyrimidinone: a theoretical study . J. Phys. Chem. B , 2011 . 115 11053 -11062 . DOI:10.1021/jp2061305http://doi.org/10.1021/jp2061305 .
Schiff, H. . Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen . Justus Liebigs Annalen der Chemie , 1864 . 131 118 -119 . DOI:10.1002/jlac.18641310113http://doi.org/10.1002/jlac.18641310113 .
Wang, T.; Turhan, M.; Gunasekaran, S. . Selected properties of pH-sensitive, biodegradable chitosan–poly(vinyl alcohol) hydrogel . Polym. Int. , 2004 . 53 911 -918. .
Godoy-Alcántar, C.; Yatsimirsky, A. K.; Lehn, J. M. . Structure-stability correlations for imine formation in aqueous solution . J. Phys. Org. Chem. , 2005 . 18 979 -985 . DOI:10.1002/poc.941http://doi.org/10.1002/poc.941 .
Xin, Y.; Yuan, J. . Schiff's base as a stimuli-responsive linker in polymer chemistry . Polym. Chem. , 2012 . 3 3045 -3055 . DOI:10.1039/c2py20290ehttp://doi.org/10.1039/c2py20290e .
Wojtecki, R. J.; Meador, M. A.; Rowan, S. J. . Using the dynamic bond to access macroscopically responsive structurally dynamic polymers . Nat. Mater. , 2011 . 10 14 DOI:10.1038/nmat2891http://doi.org/10.1038/nmat2891 .
Zhang, Y.; Tao, L.; Li, S.; Wei, Y. . Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules . Biomacromolecules , 2011 . 12 2894 -2901 . DOI:10.1021/bm200423fhttp://doi.org/10.1021/bm200423f .
Tseng, T. C.; Tao, L.; Hsieh, F. Y.; Wei, Y.; Chiu, I. M.; Hsu, S. H. . An injectable, self-healing hydrogel to repair the central nervous system . Adv. Mater. , 2015 . 27 3518 -3524 . DOI:10.1002/adma.201500762http://doi.org/10.1002/adma.201500762 .
Dong, R.; Zhao, X.; Guo, B.; Ma, P. X. . Self-healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy . ACS Appl. Mater. Interfaces , 2016 . 8 17138 -17150 . DOI:10.1021/acsami.6b04911http://doi.org/10.1021/acsami.6b04911 .
Wei, Z.; Yang, J. H.; Liu, Z. Q.; Xu, F.; Zhou, J. X.; Zrinyi, M.; Osada, Y.; Chen, Y. M. . Novel Biocompatible Polysaccharide-Based Self-Healing Hydrogel . Adv. Funct. Mater. , 2015 . 25 1352 -1359 . DOI:10.1002/adfm.201401502http://doi.org/10.1002/adfm.201401502 .
Chen, G.; Yu, Y.; Wu, X.; Wang, G.; Ren, J.; Zhao, Y. . Bioinspired multifunctional hybrid hydrogel promotes wound healing . Adv. Funct. Mater. , 2018 . 28 .
Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P. X.; Guo, B. . Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing . Biomaterials , 2018 . 183 185 -199 . DOI:10.1016/j.biomaterials.2018.08.044http://doi.org/10.1016/j.biomaterials.2018.08.044 .
Pettignano, A.; Haering, M.; Bernardi, L.; Tanchoux, N.; Quignard, F.; Diaz Diaz, D. . Self-healing alginate-gelatin biohydrogels based on dynamic covalent chemistry: elucidation of key parameters . Mater. Chem. Front. , 2017 . 1 73 -79 . DOI:10.1039/C6QM00066Ehttp://doi.org/10.1039/C6QM00066E .
Vahedi, M.; Barzin, J.; Shokrolahi, F.; Shokrollahi, P. . Self-healing, injectable gelatin hydrogels cross-linked by dynamic schiff base linkages support cell adhesion and sustained release of antibacterial drugs . Macromol. Mater. Eng. , 2018 . 303 .
Yan, B.; Huang, J.; Han, L.; Gong, L.; Li, L.; Israelachvili, J. N.; Zeng, H. . Duplicating dynamic strain-stiffening behavior and nanomechanics of biological tissues in a synthetic self-healing flexible network hydrogel . ACS Nano , 2017 . 11 11074 -11081 . DOI:10.1021/acsnano.7b05109http://doi.org/10.1021/acsnano.7b05109 .
Yan, B.; Han, L.; Xiao, H.; Zhang, J.; Huang, J.; Hu, W.; Gu, Y.; Liu, Q.; Zeng, H. . Rapid dewatering and consolidation of concentrated colloidal suspensions: mature fine tailings via self-healing composite hydrogel . ACS Appl. Mater. Interfaces , 2019 . 11 21610 -21618 . DOI:10.1021/acsami.9b05692http://doi.org/10.1021/acsami.9b05692 .
Wang, W. D.; Xiang, L.; Gong, L.; Hu, W. H.; Huang, W. J.; Chen, Y. J.; Asha, A. B.; Srinivas, S.; Chen, L. Y.; Narain, R.; Zeng, H. B. . Injectable, self-healing hydrogel with tunable optical, mechanical, and antimicrobial properties . Chem. Mater. , 2019 . 31 2366 -1376 . DOI:10.1021/acs.chemmater.8b04803http://doi.org/10.1021/acs.chemmater.8b04803 .
Wu, M.; Chen, J.; Huang, W.; Yan, B.; Peng, Q.; Liu, J.; Chen, L.; Zeng, H. . Injectable and self-healing nanocomposite hydrogels with ultrasensitive pH-responsiveness and tunable mechanical properties: implications for controlled drug delivery . Biomacromolecules , 2020 . 21 2409 -2420 . DOI:10.1021/acs.biomac.0c00347http://doi.org/10.1021/acs.biomac.0c00347 .
Wu, M.; Chen, J.; Ma, Y.; Yan, B.; Pan, M.; Peng, Q.; Wang, W.; Han, L.; Liu, J.; Zeng, H. . Ultra elastic, stretchable, self-healing conductive hydrogels with tunable optical properties for highly sensitive soft electronic sensors . J. Mater. Chem. A , 2020 . 8 24718 -24733 . DOI:10.1039/D0TA09735Ghttp://doi.org/10.1039/D0TA09735G .
Guan, Y.; Zhang, Y. . Boronic acid-containing hydrogels: synthesis and their applications . Chem. Soc. Rev. , 2013 . 42 8106 -8121 . DOI:10.1039/c3cs60152hhttp://doi.org/10.1039/c3cs60152h .
Brooks, W. L. A.; Sumerlin, B. S. . Synthesis and applications of boronic acid-containing polymers: from materials to medicine . Chem. Rev. , 2016 . 116 1375 -1397 . DOI:10.1021/acs.chemrev.5b00300http://doi.org/10.1021/acs.chemrev.5b00300 .
Yan, J.; Springsteen, G.; Deeter, S.; Wang, B. . The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols—it is not as simple as it appears . Tetrahedron , 2004 . 60 11205 -11209 . DOI:10.1016/j.tet.2004.08.051http://doi.org/10.1016/j.tet.2004.08.051 .
Deng, C. C.; Brooks, W. L. A.; Abboud, K. A.; Sumerlin, B. S. . Boronic acid-based hydrogels undergo self-healing at neutral and acidic pH . ACS Macro Lett. , 2015 . 4 220 -224 . DOI:10.1021/acsmacrolett.5b00018http://doi.org/10.1021/acsmacrolett.5b00018 .
Chen, Y.; Diaz-Dussan, D.; Wu, D.; Wang, W.; Peng, Y.-Y.; Asha, A. B.; Hall, D. G.; Ishihara, K.; Narain, R. . Bioinspired self-healing hydrogel based on benzoxaborole-catechol dynamic covalent chemistry for 3D cell encapsulation . ACS Macro Lett. , 2018 . 7 904 -908 . DOI:10.1021/acsmacrolett.8b00434http://doi.org/10.1021/acsmacrolett.8b00434 .
Deuel, v. H.; Neukom, H. . Über die reaktion von borsäure und borax mit polysacchariden und anderen hochmolekularen polyoxy-verbindungen . Die Makromolekulare Chemie , 1949 . 3 13 -30 . DOI:10.1002/macp.1949.020030102http://doi.org/10.1002/macp.1949.020030102 .
He, L.; Szopinski, D.; Wu, Y.; Luinstra, G. A.; Theato, P. . Toward self-healing hydrogels using one-pot thiol-ene click and borax-diol chemistry . ACS Macro Lett. , 2015 . 4 673 -678 . DOI:10.1021/acsmacrolett.5b00336http://doi.org/10.1021/acsmacrolett.5b00336 .
Lai, Y. C.; Wu, H. M.; Lin, H. C.; Chang, C. L.; Chou, H. H.; Hsiao, Y. C.; Wu, Y. C. . Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins . Adv. Funct. Mater. , 2019 . 29 1904626 DOI:10.1002/adfm.201904626http://doi.org/10.1002/adfm.201904626 .
Tseng, T. C.; Hsieh, F. Y.; Theato, P.; Wei, Y.; Hsu, S. H. . Glucose-sensitive self-healing hydrogel as sacrificial materials to fabricate vascularized constructs . Biomaterials , 2017 . 133 20 -28 . DOI:10.1016/j.biomaterials.2017.04.008http://doi.org/10.1016/j.biomaterials.2017.04.008 .
Roberts, M. C.; Hanson, M. C.; Massey, A. P.; Karren, E. A.; Kiser, P. F. . Dynamically restructuring hydrogel networks formed with reversible covalent crosslinks . Adv. Mater. , 2007 . 19 2503 -2507 . DOI:10.1002/adma.200602649http://doi.org/10.1002/adma.200602649 .
Yesilyurt, V.; Ayoob, A. M.; Appel, E. A.; Borenstein, J. T.; Langer, R.; Anderson, D. G. . Mixed reversible covalent crosslink kinetics enable precise, hierarchical mechanical tuning of hydrogel networks . Adv. Mater. , 2017 . 29 1605947 DOI:10.1002/adma.201605947http://doi.org/10.1002/adma.201605947 .
Yesilyurt, V.; Webber, M. J.; Appel, E. A.; Godwin, C.; Langer, R.; Anderson, D. G. . Injectable self-healing glucose-responsive hydrogels with pH-regulated mechanical properties . Adv. Mater. , 2016 . 28 86 -91 . DOI:10.1002/adma.201502902http://doi.org/10.1002/adma.201502902 .
Amaral, A. J. R.; Emamzadeh, M.; Pasparakis, G. . Transiently malleable multi-healable hydrogel nanocomposites based on responsive boronic acid copolymers . Polym. Chem. , 2018 . 9 525 -537 . DOI:10.1039/C7PY01202Khttp://doi.org/10.1039/C7PY01202K .
Chen, Y.; Wang, W.; Wu, D.; Nagao, M.; Hall, D. G.; Thundat, T.; Narain, R. . Injectable self-healing zwitterionic hydrogels based on dynamic benzoxaborole-sugar interactions with tunable mechanical properties . Biomacromolecules , 2018 . 19 596 -605 . DOI:10.1021/acs.biomac.7b01679http://doi.org/10.1021/acs.biomac.7b01679 .
Wu, D.; Wang, W. D.; Diaz-Dussan, D.; Peng, Y. Y.; Chen, Y. J.; Narain, R.; Hall, D. G. . In situ forming, dual-crosslink network, self-healing hydrogel enabled by a bioorthogonal nopoldiol-benzoxaborolate click reaction with a wide pH range . Chem. Mater. , 2019 . 31 4092 -4102 . DOI:10.1021/acs.chemmater.9b00769http://doi.org/10.1021/acs.chemmater.9b00769 .
He, L.; Fullenkamp, D. E.; Rivera, J. G.; Messersmith, P. B. . pH responsive self-healing hydrogels formed by boronate–catechol complexation . Chem. Commun. , 2011 . 47 7497 -7499 . DOI:10.1039/c1cc11928ahttp://doi.org/10.1039/c1cc11928a .
Kitano, S.; Hisamitsu, I.; Koyama, Y.; Kataoka, K.; Okano, T.; Sakurai, Y. . Effect of the incorporation of amino groups in a glucose-responsive polymer complex having phenylboronic acid moieties . Polym. Adv. Technol. , 1991 . 2 261 -264 . DOI:10.1002/pat.1991.220020508http://doi.org/10.1002/pat.1991.220020508 .
Wang, W.; Xiang, L.; Diaz-Dussan, D.; Zhang, J.; Yang, W.; Gong, L.; Chen, J.; Narain, R.; Zeng, H. . Dynamic flexible hydrogel network with biological tissue-like self-protective functions . Chem. Mater. , 2020 . 32 10545 -10555 . DOI:10.1021/acs.chemmater.0c03526http://doi.org/10.1021/acs.chemmater.0c03526 .
0
Views
4
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution