a.Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
b.School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
shixuetao@nwpu.edu.cn (X.T.S.)
gjw@nwpu.edu.cn; nwpugjw@163.com (J.W.G.)
Scan for full text
Teng-Bo Ma, Hao Ma, Kun-Peng Ruan, et al. Thermally Conductive Poly(lactic acid) Composites with Superior Electromagnetic Shielding Performances
Teng-Bo Ma, Hao Ma, Kun-Peng Ruan, et al. Thermally Conductive Poly(lactic acid) Composites with Superior Electromagnetic Shielding Performances
This work proposes a facile fabrication strategy for thermally conductive graphite nanosheets/poly(lactic acid) sheets with ordered GNPs (o-GNPs/PLA) ,via, fused deposition modeling (FDM) 3D printing technology. Further combinations of o-GNPs/PLA with Ti,3,C,2,T,x, films prepared by vacuum-assisted filtration were carried out by “layer-by-layer stacking-hot pressing” to be the thermally conductive Ti,3,C,2,T,x,/(o-GNPs/PLA) composites with superior electromagnetic interference shielding effectiveness (EMI SE). When the content of GNPs was 18.60 wt% and 4 layers of Ti,3,C,2,T,x, (6.98 wt%) films were embedded, the in-plane thermal conductivity coefficient (,λ,||,) and EMI SE (EMI SE,||,) values of the thermally conductive Ti,3,C,2,T,x,/(o-GNPs/PLA) composites significantly increased to 3.44 W·m,–1,·K,–1, and 65 dB (3.00 mm), increased by 1223.1% and 2066.7%, respectively, compared with ,λ,||, (0.26 W·m,–1,·K,–1, ) and EMI SE,||, (3 dB) of neat PLA matrix. This work offers a novel and easily route for designing and manufacturing highly thermally conductive polymer composites with superior EMI SE for broader application.
Polymer-matrix composites (PMCs)Ti3C2Tx3D printingThermal conductivityElectromagnetic interference (EMI)
Cui, S.; Song, N.; Shi, L.; Ding, P . Enhanced thermal conductivity of bioinspired nanofibrillated cellulose hybrid films based on graphene sheets and nanodiamonds . ACS Sustain. Chem. Eng. , 2020 . 8 6363 -6370 . DOI:10.1021/acssuschemeng.0c00420http://doi.org/10.1021/acssuschemeng.0c00420 .
Yan, Q.; Dai, W.; Gao, J.; Tan, X.; Lv, L.; Ying, J.; Lu, X.; Lu, J.; Yao, Y.; Wei, Q.; Sun, R.; Yu, J.; Jiang, N.; Chen, D.; Wong, C . P.; Xiang, R.; Maruyama, S.; Lin, C. T. Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader . ACS Nano , 2021 . 15 6489 -6498 . DOI:10.1021/acsnano.0c09229http://doi.org/10.1021/acsnano.0c09229 .
Wang, C.; Murugadoss, V.; Kong, J.; He, Z.; Mai, X.; Shao, Q.; Chen, Y.; Guo, L.; Liu, C. T.; Angaiahd, S.; Guo, Z. H . Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding . Carbon , 2018 . 140 696 -733 . DOI:10.1016/j.carbon.2018.09.006http://doi.org/10.1016/j.carbon.2018.09.006 .
Yun, T.; Kim, H.; Iqbal, A.; Cho, Y. S.; Lee, G. S.; Kim, M. K.; Kim, S. J.; Kim, D.; Gogotsi, Y.; Kim, S. O.; Koo, C. M . Electromagnetic interference shielding: electromagnetic shielding of monolayer MXene assemblies . Adv. Mater. , 2020 . 32 2070064 DOI:10.1002/adma.202070064http://doi.org/10.1002/adma.202070064 .
Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W . Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding emi shielding performances and excellent thermal conductivities . Nano-Micro Lett. , 2021 . 13 91 DOI:10.1007/s40820-021-00624-4http://doi.org/10.1007/s40820-021-00624-4 .
Jia, Y.; Ajayi, T. D.; Wahls, B. H.; Ramakrishnan, K . R.; Ekkad, S.; Xu, C. Multifunctional ceramic composite system for simultaneous thermal protection and electromagnetic interference shielding for carbon fiber-reinforced polymer composites . ACS Appl. Mater. Interfaces. , 2020 . 12 58005 -58017 . DOI:10.1021/acsami.0c17361http://doi.org/10.1021/acsami.0c17361 .
Li, J.; Zhao, X.; Wu, W.; Ji, X.; Lu, Y.; Zhang, L . Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity . Chem. Eng. J. , 2021 . 415 129054 DOI:10.1016/j.cej.2021.129054http://doi.org/10.1016/j.cej.2021.129054 .
Vu, M. C.; Choi, W. K.; Lee, S. G.; Park, P. J.; Kim, D. H.; Islam, M. A.; Kim, S. R . High thermal conductivity enhancement of polymer composites with vertically aligned silicon carbide sheet scaffolds . ACS Appl. Mater. Interfaces , 2020 . 12 23388 -23398 . DOI:10.1021/acsami.0c02421http://doi.org/10.1021/acsami.0c02421 .
Song, J. N.; Peng, Z. L.; Zhang, Y . Enhancement of thermal conductivity and mechanical properties of silicone rubber composites by using acrylate grafted siloxane copolymers . Chem. Eng. J. , 2020 . 391 123476 DOI:10.1016/j.cej.2019.123476http://doi.org/10.1016/j.cej.2019.123476 .
Lule, Z.; Kim, J . Thermally conductive and highly rigid polylactic acid (PLA) hybrid composite filled with surface treated alumina/nano-sized aluminum nitride . Compos. Part A-Appl. S , 2019 . 124 105506 DOI:10.1016/j.compositesa.2019.105506http://doi.org/10.1016/j.compositesa.2019.105506 .
Ma, T. B.; Zhao, Y. S.; Ruan, K. P.; Liu, X. R.; Zhang, J. L.; Guo, Y. Q.; Yang, X. T.; Kong, J.; Gu, J. W. Highly thermal conductivities. excellent mechanical robustness and flexibility . and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures . ACS Appl. Mater. Interfaces , 2020 . 12 1677 -1686 . DOI:10.1021/acsami.9b19844http://doi.org/10.1021/acsami.9b19844 .
Yang, G.; Zhang, X. D.; Shang, Y.; Xu, P. H.; Pan, D.; Su, F. M.; Ji, Y. X.; Feng, Y. Z.; Liu, Y. Z.; Liu, C. T . Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection oriented boron nitride nanoplatelets . Compos. Sci. Technol. , 2021 . 201 108521 DOI:10.1016/j.compscitech.2020.108521http://doi.org/10.1016/j.compscitech.2020.108521 .
Wu, F. P.; Lin, Z. Q.; Xu, T.; Chen, J. Y.; Huang, G. S.; Wu, H. J.; Zhou, X. Q.; Wang, D. J.; Liu, Y. F.; Hu, J. Q . Development and thermal properties of a novel sodium acetate trihydrate-acetamide-micron/nano aluminum nitride composite phase change material . Mater. Design , 2020 . 196 109113 DOI:10.1016/j.matdes.2020.109113http://doi.org/10.1016/j.matdes.2020.109113 .
Lee, W.; Kim, J . Enhanced through-plane thermal conductivity of paper-like cellulose film with treated hybrid fillers comprising boron nitride and aluminum nitride . Compos. Sci. Technol. , 2020 . 200 108424 DOI:10.1016/j.compscitech.2020.108424http://doi.org/10.1016/j.compscitech.2020.108424 .
Cheng, S. S.; Duan, X. Y.; Liu, X. Q.; Zhang, Z. Y.; An, D.; Zhao, G. Z.; Liu, Y. Q . Achieving significant thermal conductivity improvement via constructing vertically arranged and covalently bonded silicon carbide nanowires/natural rubber composites . J. Mater. Chem. C , 2021 . 9 7127 -7141 . DOI:10.1039/D1TC00659Bhttp://doi.org/10.1039/D1TC00659B .
Yao, Y. M.; Zeng, X. L.; Pan, G. R.; Sun, J. J.; Hu, J. T.; Huang, Y.; Sun, R.; Xu, J. B.; Wong, C. P . Interfacial engineering of silicon carbide nanowire/cellulose microcrystal paper toward high thermal conductivity . ACS Appl. Mater. Interfaces , 2016 . 8 31248 -31255 . DOI:10.1021/acsami.6b10935http://doi.org/10.1021/acsami.6b10935 .
Tang, X. H.; Tang, Y.; Wang, Y.; Weng ,Y. X.; Wang, M . Interfacial metallization in segregated poly(lactic acid)/poly(ε-caprolactone)/multi-walled carbon nanotubes composites for enhancing electromagnetic interference shielding . Compos. Part A-Appl. S , 2020 . 139 106116 DOI:10.1016/j.compositesa.2020.106116http://doi.org/10.1016/j.compositesa.2020.106116 .
Jiang, C.; Tan, D.; Li, Q.; Huang, J.; Bu, J.; Zang, L.; Ji, R. N.; Bi, S.; Guo, Q. L . High-performance and reliable silver nanotube networks for efficient and large-scale transparent electromagnetic interference shielding . ACS Appl. Mater. Interfaces , 2021 . 13 15525 -15535 . DOI:10.1021/acsami.1c00590http://doi.org/10.1021/acsami.1c00590 .
Feng, M.; Pan, Y.; Zhang, M.; Gao, Q.; Liu, C.; Shen, C.; Liu, X. H . Largely improved thermal conductivity of HDPE composites by building a 3D hybrid fillers network . Compos. Sci. Technol. , 2021 . 206 108666 DOI:10.1016/j.compscitech.2021.108666http://doi.org/10.1016/j.compscitech.2021.108666 .
Zhou, X.; Deng, J. R.; Fang, C. Q.; Lei, W. Q.; Song, Y. H.; Zhang, Z. S.; Huang, Z. G.; Li, Y . Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties . J. Mater. Sci. Technol. , 2021 . 60 27 -34 . DOI:10.1016/j.jmst.2020.04.038http://doi.org/10.1016/j.jmst.2020.04.038 .
Mirkhani, S. A.; Iqbal, A.; Kwon, T.; Chae, A.; Kim, D.; Kim, H.; Kim, S. J.; Kim, M. K.; Koo, C. M . Reduction of electrochemically exfoliated graphene films for high-performance electromagnetic interference shielding . ACS Appl. Mater. Interfaces , 2021 . 13 15827 -15836 . DOI:10.1021/acsami.0c22920http://doi.org/10.1021/acsami.0c22920 .
Gao, M.; Peng, K.; Pan, T.; Long, F.; Lin, Y . Improving the local thermal conductivity of flexible films by microchannels filled with graphene . Compos. Commun. , 2021 . 25 100689 DOI:10.1016/j.coco.2021.100689http://doi.org/10.1016/j.coco.2021.100689 .
Afroj, S.; Tan, S.; Abdelkader, A. M.; Novoselov, K. S.; Karim, N. Highly conductive. scalable . and machine washable graphene-based e-textiles for multifunctional wearable electronic applications . Adv. Funct. Mater. , 2020 . 30 2000293 DOI:10.1002/adfm.202000293http://doi.org/10.1002/adfm.202000293 .
Chen, K. Y.; Gupta, S.; Tai, N. H . Reduced graphene oxide/Fe2O3 hollow microspheres coated sponges for flexible electromagnetic interference shielding composites . Compos. Commun. , 2021 . 23 100572 DOI:10.1016/j.coco.2020.100572http://doi.org/10.1016/j.coco.2020.100572 .
Agarwal, V.; Fadil, Y.; Wan, A.; Maslekar, N.; Tran, B. N.; Mat Noor, R. A.; Bhattacharyya, S.; Biazik, J.; Lim, S.; Zetterlund, P. B . Influence of anionic surfactants on the fundamental properties of polymer/reduced graphene oxide nanocomposite films . ACS Appl. Mater. Interfaces , 2021 . 13 18338 -18347 . DOI:10.1021/acsami.1c02379http://doi.org/10.1021/acsami.1c02379 .
Pan, X. L.; Debije, M. G.; Schenning, A. P. H. J.; Bastiaansen, C. W. M . Enhanced thermal conductivity in oriented polyvinyl alcohol/graphene oxide composites . ACS Appl. Mater. Interfaces , 2021 . 13 28864 -28869 . DOI:10.1021/acsami.1c06415http://doi.org/10.1021/acsami.1c06415 .
Ruan, K. P.; Guo, Y. Q.; Gu, J. W . Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness . Macromolecules , 2021 . 54 4934 -4944 . DOI:10.1021/acs.macromol.1c00686http://doi.org/10.1021/acs.macromol.1c00686 .
Zhou, H.; Deng, H.; Zhang, L.; Fu, Q . Significant enhancement of thermal conductivity in polymer composite via constructing macroscopic segregated filler networks . ACS Appl. Mater. Interfaces , 2017 . 9 29071 -29081 . DOI:10.1021/acsami.7b07947http://doi.org/10.1021/acsami.7b07947 .
Ma, J. K.; Shang, T. Y.; Ren, L. L.; Yao, Y. M.; Zhang, T.; Xie, J. Q.; Zhang, B. T.; Zeng, X. L.; Sun, R.; Xu, J. B.; Wong, C. P . Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material . Chem. Eng. J. , 2020 . 380 122550 DOI:10.1016/j.cej.2019.122550http://doi.org/10.1016/j.cej.2019.122550 .
Wable, V.; Biswas, P. K.; Moheimani, R.; Aliahmad, N.; Omole, P.; Siegel, A . P.; Agarwal, M.; Dalir, H. Engineering the electrospinning of MWCNTs/epoxy nanofiber scaffolds to enhance physical and mechanical properties of CFRPs . Compos. Sci. Technol. , 2021 . 213 108941 DOI:10.1016/j.compscitech.2021.108941http://doi.org/10.1016/j.compscitech.2021.108941 .
Hu, J. T.; Huang, Y.; Yao, Y. M.; Pan, G. R.; Sun, J. J.; Zeng, X. L.; Sun, R.; Xu, J. B.; Song, B.; Wong, C. P . Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN . ACS Appl. Mater. Interfaces , 2017 . 9 13544 -13553 . DOI:10.1021/acsami.7b02410http://doi.org/10.1021/acsami.7b02410 .
Yang, L.; Zhang, L.; Li, C . Bridging boron nitride nanosheets with oriented carbon nanotubes by electrospinning for the fabrication of thermal conductivity enhanced flexible nanocomposites . Compos. Sci. Technol. , 2020 . 200 108429 DOI:10.1016/j.compscitech.2020.108429http://doi.org/10.1016/j.compscitech.2020.108429 .
Yang, X. T.; Fan, S. G.; Li, Y.; Guo, Y. Q.; Ruan, K. P.; Li, Y. G.; Zhang, S. M.; Zhang, J. L.; Kong, J.; Gu, J. W . Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework . Compos. Part A-Appl. S , 2020 . 128 105670 DOI:10.1016/j.compositesa.2019.105670http://doi.org/10.1016/j.compositesa.2019.105670 .
Gu, J. W.; Ruan, K. P . Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity. interfacial thermal resistance and theoretics . Nano-Micro Lett. , 2021 . 13 110 DOI:10.1007/s40820-021-00640-4http://doi.org/10.1007/s40820-021-00640-4 .
Guo, Y. Q.; Ruan, K. P.; Gu, J. W . Controllable thermal conductivity in composites by constructing thermal conduction networks . Mater. Today Phys. , 2021 . 20 100449 DOI:10.1016/j.mtphys.2021.100449http://doi.org/10.1016/j.mtphys.2021.100449 .
Guo, Y. Q.; Yang, X. T.; Ruan, K. P.; Kong, J.; Dong, M. Y.; Zhang, J. X.; Gu, J. W.; Guo, Z. H . Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites . ACS Appl. Mater. Interfaces , 2019 . 11 25465 -25473 . DOI:10.1021/acsami.9b10161http://doi.org/10.1021/acsami.9b10161 .
Yang, X. T.; Guo, Y. Q.; Han, Y. X.; Li, Y.; Ma, T. B.; Chen, M. J.; Kong, J.; Zhu, J. H.; Gu, J. W . Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology . Compos. Part B-Eng. , 2019 . 175 107070 DOI:10.1016/j.compositesb.2019.107070http://doi.org/10.1016/j.compositesb.2019.107070 .
Jiang, H.; Le Barbenchon, L.; Bednarcyk, B . A.; Scarpa, F.; Chen, Y. Bioinspired multilayered cellular composites with enhanced energy absorption and shape recovery . Addit. Manuf. , 2020 . 36 101430 .
Wiese, M.; Thiede, S.; Herrmann, C . Rapid manufacturing of automotive polymer series parts: a systematic review of processes. materials and challenges . Addit. Manuf. , 2020 . 36 101582 .
Zou, M. M.; Zhang, Y.; Cai, Z. R.; Li, C. X.; Sun, Z. Y.; Yu, C. L.; Dong, Z. C.; Wu, L.; Song, Y. L . 3D printing a biomimetic bridge-arch solar evaporator for eliminating salt accumulation with desalination and agricultural applications . Adv. Mater. , 2021 . 2021 2102443 .
Bom, S.; Martins, A. M.; Ribeiro, H. M.; Marto, J . Diving into 3D (bio)printing: a revolutionary tool to customize the production of drug and cell-based systems for skin delivery . Int. J. Pharmaceut. , 2021 . 605 120794 DOI:10.1016/j.ijpharm.2021.120794http://doi.org/10.1016/j.ijpharm.2021.120794 .
Kalkal, A.; Kumar, S.; Kumar, P.; Pradhan, R.; Willander, M.; Packirisamy, G.; Kumar, S.; DharMalhotra, B . Recent advances in 3D printing technologies for wearable (bio)sensors . Addit. Manuf. , 2021 . 46 102088 .
Diederichs, E. V.; Picard, M. C.; Chang, B. P.; Misra, M.; Mielewski, D. F.; Mohanty, A. K . Strategy to improve printability of renewable resource-based engineering plastic tailored for FDM applications . ACS Omega , 2019 . 4 20297 -20307 . DOI:10.1021/acsomega.9b02795http://doi.org/10.1021/acsomega.9b02795 .
Peng, F.; Jiang, H.; Woods, A.; Joo, P.; Amis, E.J.; Zacharia, N.S.; Vogt, B.D . 3D printing with core-shell filaments containing high or low density polyethylene shells . ACS Appl. Polym. Mater. , 2019 . 1 275 -285. .
Deng, S.; Wu, J.; Dickey, M . D.; Zhao, Q.; Xie, T. Rapid open-air digital light 3D printing of thermoplastic polymer . Adv. Mater. , 2019 . 31 1903970 DOI:10.1002/adma.201903970http://doi.org/10.1002/adma.201903970 .
Liu, H.; Fu, R.; Su, X.; Wu, B.; Wang, H.; Xu, Y.; Liu, X. H . Electrical insulating MXene/PDMS/BN composite with enhanced thermal conductivity for electromagnetic shielding application . Compos. Commun. , 2021 . 23 100593 DOI:10.1016/j.coco.2020.100593http://doi.org/10.1016/j.coco.2020.100593 .
Gnanasekaran, K.; Heijmans, T.; Van Bennekom, S.; Woldhuis, H.; Wijnia, S.; De With, G; Friedrich, H . 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling . Appl. Mater. Today , 2017 . 9 21 -28 . DOI:10.1016/j.apmt.2017.04.003http://doi.org/10.1016/j.apmt.2017.04.003 .
Nguyen, N.; Zhang, S.; Oluwalowo, A.; Park, J . G.; Yao, K.; Liang, R. High-performance and lightweight thermal management devices by 3D printing and assembly of continuous carbon nanotube sheets . ACS Appl. Mater. Interfaces , 2018 . 10 27171 -27177 . DOI:10.1021/acsami.8b07556http://doi.org/10.1021/acsami.8b07556 .
Guo, Y. D.; Yang, H. N.; Lin, G. P.; Jin, H. C.; Shen, X . B.; He, J.; Miao, J.Y. Thermal performance of a 3D printed lattice-structure heat sink packaging phase change material . Chinese J. Aeronaut. , 2021 . 34 373 -385 . DOI:10.1016/j.cja.2020.07.033http://doi.org/10.1016/j.cja.2020.07.033 .
Jing, J.; Chen, Y.; Shi, S.; Yang, L.; Lambin, P . Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods . Chem. Eng. J. , 2020 . 402 126218 DOI:10.1016/j.cej.2020.126218http://doi.org/10.1016/j.cej.2020.126218 .
Ren, W.; Zhu, H. X.; Yang, Y. Q.; Chen, Y. H.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q . Flexible and robust silver coated non-woven fabric reinforced waterborne polyurethane films for ultra-efficient electromagnetic shielding . Compos. Part B-Eng. , 2020 . 184 107745 DOI:10.1016/j.compositesb.2020.107745http://doi.org/10.1016/j.compositesb.2020.107745 .
Qian, K. P.; Zhou, Q. F.; Wu, H. M.; Fang, J. H.; Miao, M.; Yang, Y. H.; Cao, S. M.; Shi, L. Y.; Feng X . Carbonized cellulose microsphere@void@MXene composite films with egg-box structure for electromagnetic interference shielding . Compos. Part A-Appl. S , 2021 . 141 106229 DOI:10.1016/j.compositesa.2020.106229http://doi.org/10.1016/j.compositesa.2020.106229 .
Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W . Polymer-based EMI shielding composites with 3D conductive networks: a mini-review . SusMat , 2021 . 1 413 -431. .
Wang, Y.; Fan, Z. W.; Zhang, H.; Guo, J.; Yan, D. X.; Wang, S. F.; Dai, K.; Li, Z. M . 3D-printing of segregated carbon nanotube/polylactic acid composite with enhanced electromagnetic interference shielding and mechanical performance . Mater. Design , 2021 . 197 109222 DOI:10.1016/j.matdes.2020.109222http://doi.org/10.1016/j.matdes.2020.109222 .
Zhang, Y. L.; Ruan, K. P.; Gu, J. W . Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities . Small , 2021 . 17 2101951 DOI:10.1002/smll.202101951http://doi.org/10.1002/smll.202101951 .
Huang S.; Wang L.; Li Y. C.; Liang C. B.; Zhang J. L . Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures . J. Appl. Polym. Sci. , 2021 . 138 50649 DOI:10.1002/app.50649http://doi.org/10.1002/app.50649 .
0
Views
8
Downloads
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution