1.School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, China
chenjb@zzu.edu.cn (J.B.C.)
binzhang@zzu.edu.cn (B.Z.)
Scan for full text
Ze-Qian Wang, Yi-Meng Wang, Xing-Yu Wang, et al. Self-nucleation of Patterned Polymer Thin Films Defined by Soft Lithography. [J]. Chinese Journal of Polymer Science 40(6):651-657(2022)
Ze-Qian Wang, Yi-Meng Wang, Xing-Yu Wang, et al. Self-nucleation of Patterned Polymer Thin Films Defined by Soft Lithography. [J]. Chinese Journal of Polymer Science 40(6):651-657(2022) DOI: 10.1007/s10118-022-2709-1.
The periodic arrays of PEO-,b,-P2VP isolated single crystals of uniform size with simultaneously controllable number density and spatial distribution of nuclei were prepared by self-nucleation of patterned dendritic crystals.
The nucleation of crystals is often a determining step in the phase transition of materials, but it remains a challenge to control the density and specific location of nuclei simultaneously. Here we fabricated the isolated single crystals of uniform size with controlled number density and spatial distribution by self-nucleation of patterned dendritic crystals. Imprint lithography creates the periodic void space on the surface of poly(ethylene oxide)-,b,-poly(2-vinyl pyridine) (PEO-,b,-P2VP) block copolymer thin films and provides spatial redistribution of polymers, leading to the preferential nucleation and subsequent oriented growth of dendrites in the periodic arrays of imprinted lines. The morphology and thermal stability of the patterned crystals can be adjusted by tuning embossing conditions (,e. g., temperature and pressure). Furthermore, in the self-nucleation technique, the annealing temperature and heating rate are used as the feedback parameters to map the number density and spatial distribution of regrown single crystals. Such PEO-,b,-P2VP crystalline pattern can be used as a versatile template for large-area manufacturing of selective metal patterns for electronic devices and other applications.
Self-nucleationImprint lithographyAtomic force microscopyCrystallization patternSelective metal pattern
Binsbergen, F. L . Orientation-induced nucleation in polymer crystallization . Nature , 1966 . 211 516 -517 . DOI:10.1038/211516a0http://doi.org/10.1038/211516a0 .
Mercier, J. P . Nucleation in polymer crystallization: a physical or a chemical mechanism . Polym. Eng. Sci. , 1990 . 30 270 -278 . DOI:10.1002/pen.760300504http://doi.org/10.1002/pen.760300504 .
Xu, J.; Reiter, G.; Alamo, R. G . Concepts of nucleation in polymer crystallization . Crystals , 2021 . 11 304 DOI:10.3390/cryst11030304http://doi.org/10.3390/cryst11030304 .
Hu, W . The physics of polymer chain-folding . Phys. Rep. , 2018 . 747 1 -50 . DOI:10.1016/j.physrep.2018.04.004http://doi.org/10.1016/j.physrep.2018.04.004 .
Wang, B.; He, K.; Lu, Y.; Zhou, Y.; Chen, J.; Shen, C.; Chen, J.; Men, Y.; Zhang, B . Nucleation mechanism for form II to I polymorphic transformation in polybutene-1 . Macromolecules , 2020 . 53 6476 -6485 . DOI:10.1021/acs.macromol.0c00885http://doi.org/10.1021/acs.macromol.0c00885 .
Qiao, Y.; Wang, Q.; Men, Y . Kinetics of nucleation and growth of form II to I polymorphic transition in polybutene-1 as revealed by stepwise annealing . Macromolecules , 2016 . 49 5126 -5136 . DOI:10.1021/acs.macromol.6b00862http://doi.org/10.1021/acs.macromol.6b00862 .
Schick, C.; Androsch, R.; Schmelzer, J. W. P . Homogeneous crystal nucleation in polymers . J. Phys.: Condens. Matter , 2017 . 29 453002 DOI:10.1088/1361-648X/aa7fe0http://doi.org/10.1088/1361-648X/aa7fe0 .
Lu, Y.; Lyu, D.; Cavallo, D.; Men, Y . Enhanced beta to alpha recrystallization in beta isotactic polypropylene with different thermal histories . Polym. Cryst. , 2019 . 2 e10040 DOI:10.1002/pcr2.10040http://doi.org/10.1002/pcr2.10040 .
Hou, C.; Wan, R.; Sun, X.; Ren, Z.; Li, H.; Yan, S . The development of an abnormal isotactic polypropylene spherulite: morphology and kinetics . Polym. Cryst. , 2020 . 3 e10157 DOI:10.1002/pcr2.10157http://doi.org/10.1002/pcr2.10157 .
Binsbergen, F. L . Natural and artificial heterogeneous nucleation in polymer crystallization . J. Polym. Sci., Polym. Symp. , 1977 . 59 11 -29 . DOI:10.1002/polc.5070590104http://doi.org/10.1002/polc.5070590104 .
Li, L.; Xin, R.; Li, H.; Sun, X.; Ren, Z.; Huang, Q.; Yan, S . Tacticity-dependent epitaxial crystallization of poly(L-lactic acid) on an oriented polyethylene substrate . Macromolecules , 2020 . 53 8487 -8493 . DOI:10.1021/acs.macromol.0c01456http://doi.org/10.1021/acs.macromol.0c01456 .
Li, L.; Hu, J.; Li, Y.; Huang, Q.; Sun, X.; Yan, S . Evidence for the soft and hard epitaxies of poly(L-lactic acid) on an oriented polyethylene substrate and their dependence on the crystallization temperature . Macromolecules , 2020 . 53 1745 -1751 . DOI:10.1021/acs.macromol.9b02598http://doi.org/10.1021/acs.macromol.9b02598 .
Liu, Z.; Zheng, G.; Shi, H.; Liu, C.; Mi, L.; Li, Q.; Liu, X . Simultaneous enhancement of toughness and strength of stretched iPP film via tiny amount of β-nucleating agent under “shear-free” melt-extrusion . Chinese J. Polym. Sci. , 2021 . 39 1481 -1488 . DOI:10.1007/s10118-021-2589-9http://doi.org/10.1007/s10118-021-2589-9 .
Blundell, D. J.; Keller, A.; Kovacs, A. J . A new self-nucleation phenomenon and its application to the growing of polymer crystals from solution . J. Polym. Sci., Part B: Polym. Lett. , 1966 . 4 481 -486 . DOI:10.1002/pol.1966.110040709http://doi.org/10.1002/pol.1966.110040709 .
Reiter, G . Some unique features of polymer crystallisation . Chem. Soc. Rev. , 2014 . 43 2055 -2065 . DOI:10.1039/C3CS60306Ghttp://doi.org/10.1039/C3CS60306G .
Zhou, T; Yang, H.; Ning, N.; Xiang, Y; Du, R; Fu, Q . Partial melting and recrystallization of isotactic polypropylene . Chinese J. Polym. Sci. , 2010 . 28 77 -83 . DOI:10.1007/s10118-010-8217-8http://doi.org/10.1007/s10118-010-8217-8 .
Sangroniz, L.; Cavallo, D.; Müller, A. J . Self-Nucleation effects on polymer crystallization . Macromolecules , 2020 . 53 4581 -4604 . DOI:10.1021/acs.macromol.0c00223http://doi.org/10.1021/acs.macromol.0c00223 .
Chen, E.; Weng, X.; Zhang, A.; Mann, I.; Harris, F. W.; Cheng, S. Z. D.; Stein, R.; Hsiao, B. S.; Yeh, F . Primary nucleation in polymer crystallization . Macromol. Rapid Commun. , 2001 . 22 611 -615 . DOI:10.1002/1521-3927(20010501)22:8<611::AID-MARC611>3.0.CO;2-Jhttp://doi.org/10.1002/1521-3927(20010501)22:8<611::AID-MARC611>3.0.CO;2-J .
Fillon, B.; Thierry, A.; Wittmann, J. C.; Lotz, B. Self-nucleation and recrystallization of polymers . Isotactic polypropylene, β phase: β-α conversion and β-α growth transitions . J. Polym. Sci., Part B: Polym. Phys. , 1993 . 31 1407 -1424 . DOI:10.1002/polb.1993.090311015http://doi.org/10.1002/polb.1993.090311015 .
Jiang, J.; Zhuravlev, E.; Hu, W.; Schick, C.; Zhou, D . The effect of self-nucleation on isothermal crystallization kinetics of poly(butylene succinate) (PBS) investigated by differential fast scanning calorimetry . Chinese J. Polym. Sci. , 2017 . 35 1009 -1019 . DOI:10.1007/s10118-017-1942-5http://doi.org/10.1007/s10118-017-1942-5 .
Xu, J.; Ma, Y.; Hu, W.; Rehahn, M.; Reiter, G . Cloning polymer single crystals through self-seeding . Nat. Mater. , 2009 . 8 348 -353 . DOI:10.1038/nmat2405http://doi.org/10.1038/nmat2405 .
Wang, B.; Tang, S.; Wang, Y.; Shen, C.; Reiter, R.; Reiter, G.; Chen, J.; Zhang, B . Systematic control of self-seeding crystallization patterns of poly(ethylene oxide) in thin films . Macromolecules , 2018 . 51 1626 -1635 . DOI:10.1021/acs.macromol.7b02445http://doi.org/10.1021/acs.macromol.7b02445 .
Cui, K.; Ma, Z.; Tian, N.; Su, F.; Liu, D.; Li, L . Multiscale and multistep ordering of flow-induced nucleation of polymers . Chem. Rev. , 2018 . 118 1840 -1886 . DOI:10.1021/acs.chemrev.7b00500http://doi.org/10.1021/acs.chemrev.7b00500 .
Zhang, B.; Chen, J.; Ji, F.; Zhang, X.; Zheng, G.; Shen, C . Effects of melt structure on shear-induced β-cylindrites of isotactic polypropylene . Polymer , 2012 . 53 1791 -1800 . DOI:10.1016/j.polymer.2012.02.023http://doi.org/10.1016/j.polymer.2012.02.023 .
Zhang, B.; Chen, J.; Zhang, X.; Shen, C . Formation of β-cylindrites under supercooled extrusion of isotactic polypropylene at low shear stress . Polymer , 2011 . 52 2075 -2084 . DOI:10.1016/j.polymer.2011.03.001http://doi.org/10.1016/j.polymer.2011.03.001 .
Zhang, B.; Chen, J.; Cui, J.; Zhang, H.; Ji, F.; Zheng, G.; Heck, B.; Reiter, G.; Shen, C . Effect of shear stress on crystallization of isotactic polypropylene from a structured melt . Macromolecules , 2012 . 45 8933 -8937 . DOI:10.1021/ma3014756http://doi.org/10.1021/ma3014756 .
Chen, J.; Wang, B.; Sun, T.; Xu, J.; Chen, J.; Zhang, B . Transformation from form II to form I accelerated by oriented lamellae in polybutene-1 . Polymer , 2019 . 185 121966 DOI:10.1016/j.polymer.2019.121966http://doi.org/10.1016/j.polymer.2019.121966 .
Lu, Y.; Li, H.; Wei, H.; Wang, B.; Shen, C.; Zhang, B.; Chen, J . Influence of melt structure on form II to I phase transition of polybutene-1 under shear flow . Polymer , 2020 . 199 122562 DOI:10.1016/j.polymer.2020.122562http://doi.org/10.1016/j.polymer.2020.122562 .
Zhang, B.; Chen, J.; Freyberg, P.; Reiter, R.; Mülhaupt, R.; Xu, J.; Reiter, G . High-temperature stability of dewetting-induced thin polyethylene filaments . Macromolecules , 2015 . 48 1518 -1523 . DOI:10.1021/ma502345phttp://doi.org/10.1021/ma502345p .
Zhang, H.; Wang, B.; Wang, G.; Shen, C.; Chen, J.; Reiter, G.; Zhang, B . Dewetting-induced alignment and ordering of cylindrical mesophases in thin block copolymer films . Macromolecules , 2020 . 53 9631 -9640 . DOI:10.1021/acs.macromol.0c01233http://doi.org/10.1021/acs.macromol.0c01233 .
Nie, Y.; Zhao, Y.; Matsuba, G.; Hu, W . Shish-kebab crystallites initiated by shear fracture in bulk polymers . Macromolecules , 2018 . 51 480 -487 . DOI:10.1021/acs.macromol.7b02357http://doi.org/10.1021/acs.macromol.7b02357 .
Nie, C.; Peng, F.; Xu, T.; Sheng, J.; Chen, W.; Li, L . A unified thermodynamic model of flow-induced crystallization of polymer . Chinese J. Polym. Sci. , 2021 . 39 1489 -1495 . DOI:10.1007/s10118-021-2622-zhttp://doi.org/10.1007/s10118-021-2622-z .
Li, H.; Yan, S . Surface-induced polymer crystallization and the resultant structures and morphologies . Macromolecules , 2011 . 44 417 -428 . DOI:10.1021/ma1023457http://doi.org/10.1021/ma1023457 .
Cheng, S.; Hu, W.; Ma, Y.; Yan, S . Epitaxial polymer crystal growth influenced by partial melting of the fiber in the single-polymer composites . Polymer , 2007 . 48 4264 -4270 . DOI:10.1016/j.polymer.2007.05.030http://doi.org/10.1016/j.polymer.2007.05.030 .
Hu, W.; Frenkel, D.; Mathot, V . Simulation of shish-kebab crystallite induced by a single prealigned macromolecule . Macromolecules , 2002 . 35 7172 -7174 . DOI:10.1021/ma0255581http://doi.org/10.1021/ma0255581 .
Palacios, J. K.; Zhang, H.; Zhang, B.; Hadjichristidis, N.; Müller, A. J . Direct identification of three crystalline phases in PEO-b-PCL-b-PLLA triblock terpolymer by In situ hot-stage atomic force microscopy . Polymer , 2020 . 205 122863 DOI:10.1016/j.polymer.2020.122863http://doi.org/10.1016/j.polymer.2020.122863 .
Wang, H.; Keum, J . K.; Hiltner, A.; Baer, E. Confined crystallization of PEO in nanolayered films impacting structure and oxygen permeability . Macromolecules , 2009 . 42 7055 -7066 . DOI:10.1021/ma901379fhttp://doi.org/10.1021/ma901379f .
Wang, H.; Keum, J . K.; Hiltner, A.; Baer, E.; Freeman, B.; Rozanski, A.; Galeski, A. Confined crystallization of polyethylene oxide in nanolayer assemblies . Science , 2009 . 323 757 -760 . DOI:10.1126/science.1164601http://doi.org/10.1126/science.1164601 .
Ma, M.; Guo, Y . Physical properties of polymers under soft and hard nanoconfinement: a review . Chinese J. Polym. Sci. , 2020 . 38 565 -578 . DOI:10.1007/s10118-020-2380-3http://doi.org/10.1007/s10118-020-2380-3 .
Huang, H.; Yi, G.; Zu, X.; Zhong, B.; Luo, H . Patterning of triblock copolymer film and its application for surface-enhanced Raman scattering . Chinese J. Polym. Sci. , 2017 . 35 623 -630 . DOI:10.1007/s10118-017-1914-9http://doi.org/10.1007/s10118-017-1914-9 .
Chou, S. Y.; Krauss, P. R.; Renstrom, P. J . Imprint lithography with 25-nanometer resolution . Science , 1996 . 272 85 -87 . DOI:10.1126/science.272.5258.85http://doi.org/10.1126/science.272.5258.85 .
Chou, S. Y.; Krauss, P . R.; Zhang, W.; Guo, L.; Zhuang, L. Sub-10 nm imprint lithography and applications . J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.-Process., Meas., Phenom. , 1997 . 15 2897 -2904 . DOI:10.1116/1.589752http://doi.org/10.1116/1.589752 .
Guo, L. J . Nanoimprint lithography: methods and material requirements . Adv. Mater. , 2007 . 19 495 -513 . DOI:10.1002/adma.200600882http://doi.org/10.1002/adma.200600882 .
Chou, S. Y.; Krauss, P. R.; Renstrom, P. J . Imprint of sub-25 nm vias and trenches in polymers . Appl. Phys. Lett. , 1995 . 67 3114 -3116 . DOI:10.1063/1.114851http://doi.org/10.1063/1.114851 .
Peng, L.; Deng, Y.; Yi, P.; Lai, X . Micro hot embossing of thermoplastic polymers: a review . J. Micromech. Microeng. , 2013 . 24 013001 .
Okerberg, B. C.; Soles, C. L.; Douglas, J. F.; Ro, H. W.; Karim, A.; Hines, D. R . Crystallization of poly(ethylene oxide) patterned by nanoimprint lithography . Macromolecules , 2007 . 40 2968 -2970 . DOI:10.1021/ma070293hhttp://doi.org/10.1021/ma070293h .
Hu, Z.; Baralia, G.; Bayot, V.; Gohy, J. F.; Jonas, A. M . Nanoscale control of polymer crystallization by nanoimprint lithography . Nano Lett. , 2005 . 5 1738 -1743 . DOI:10.1021/nl051097whttp://doi.org/10.1021/nl051097w .
Yang, H.; Xu, L.; Li, X.; Zhang, X . One simple route to fabricate gold nanowire network films by using P2VP-b-PEO diblock copolymers as templates . Mater. Chem. Phys. , 2009 . 114 525 -529 . DOI:10.1016/j.matchemphys.2008.11.040http://doi.org/10.1016/j.matchemphys.2008.11.040 .
Cheng, S. Z. D.; Zhang, A.; Chen, J.; Heberer, D. P. Nonintegral and integral folding crystal growth in low-molecular mass poly(ethylene oxide) fractions. I . Isothermal lamellar thickening and thinning . J. Polym. Sci., Part B: Polym. Phys. , 1991 . 29 287 -297. .
Kang, J. H.; Kim, K. S.; Kim, K. W . Molecular dynamics study on the effects of stamp shape, adhesive energy, and temperature on the nanoimprint lithography process . Appl. Surf. Sci. , 2010 . 257 1562 -1572 . DOI:10.1016/j.apsusc.2010.08.096http://doi.org/10.1016/j.apsusc.2010.08.096 .
Yang, Y.; Mielczarek, K.; Zakhidov, A.; Hu, W . Large molecular weight polymer solar cells with strong chain alignment created by nanoimprint lithography . ACS Appl. Mater. Interfaces , 2016 . 8 7300 -7307 . DOI:10.1021/acsami.6b00192http://doi.org/10.1021/acsami.6b00192 .
Aryal, M.; Trivedi, K.; Hu, W . Nano-confinement induced chain alignment in ordered P3HT nanostructures defined by nanoimprint lithography . ACS Nano , 2009 . 3 3085 -3090 . DOI:10.1021/nn900831mhttp://doi.org/10.1021/nn900831m .
Yang, Y.; Mielczarek, K.; Aryal, M.; Zakhidov, A.; Hu, W . Nanoimprinted polymer solar cell . ACS Nano , 2012 . 6 2877 -2892 . DOI:10.1021/nn3001388http://doi.org/10.1021/nn3001388 .
Reiter, G.; Botiz, I.; Graveleau, L.; Grozev, N.; Albrecht, K.; Mourran, A.; Möller, M. Morphologies of polymer crystals in thin films. In Progress in understanding of polymer crystallization, Springer, Berlin Heidelberg New York, 2007, p. 179−200.
Taguchi, K.; Miyaji, H.; Izumi, K.; Hoshino, A.; Miyamoto, Y.; Kokawa, R . Crystal growth of isotactic plystyrene in ultrathin films: film thickness dependence . J. Macromol. Sci., Part B , 2002 . 41 1033 -1042 . DOI:10.1081/MB-120013081http://doi.org/10.1081/MB-120013081 .
Wang, B.; Wang, G.; He, S.; Sun, T.; Chen, J.; Shen, C.; Zhang, B . Self-nucleation of β-form isotactic polypropylene lamellar crystals in thin films . Macromolecules , 2021 . 54 11404 -11411 . DOI:10.1021/acs.macromol.1c02057http://doi.org/10.1021/acs.macromol.1c02057 .
0
Views
8
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution