1.The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
jinghuang@jiangnan.edu.cn (J.H.)
wfdong@jiangnan.edu.cn (W.F.D.)
Scan for full text
Zhou, X. W.; Huang, J.; Zhang, X. H.; Li, T.; Wang, Y.; Wang, S. B.; Xia, B. H.; Dong, W. F. Design of tough, yet strong, heat-resistant PLA/PBAT blends with reconfigurable shape memory behavior by engineering exchangeable covalent crosslinks. Chinese J. Polym. Sci. 2023, 41, 1868–1878
Xiao-Wen Zhou, Jing Huang, Xu-Hui Zhang, et al. Design of Tough, yet Strong, Heat-resistant PLA/PBAT Blends with Reconfigurable Shape Memory Behavior by Engineering Exchangeable Covalent Crosslinks. [J]. Chinese Journal of Polymer Science 41(12):1868-1878(2023)
Zhou, X. W.; Huang, J.; Zhang, X. H.; Li, T.; Wang, Y.; Wang, S. B.; Xia, B. H.; Dong, W. F. Design of tough, yet strong, heat-resistant PLA/PBAT blends with reconfigurable shape memory behavior by engineering exchangeable covalent crosslinks. Chinese J. Polym. Sci. 2023, 41, 1868–1878 DOI: 10.1007/s10118-023-2997-0.
Xiao-Wen Zhou, Jing Huang, Xu-Hui Zhang, et al. Design of Tough, yet Strong, Heat-resistant PLA/PBAT Blends with Reconfigurable Shape Memory Behavior by Engineering Exchangeable Covalent Crosslinks. [J]. Chinese Journal of Polymer Science 41(12):1868-1878(2023) DOI: 10.1007/s10118-023-2997-0.
Exchangeable hydroxyl-ester crosslinks were programmed into biodegradable PLA/PBAT blends by straightforward reactive blending. The resultant vitrimeric PLA/PBAT blends show concurrently and significantly enhanced tensile strength, toughness, and heat resistance due to the greatly improved interfacial adhesion and the network structure. Moreover, the vitrimeic PLA/PBAT blends exhibit good reconfigurable shape memory behavior.
Polylactide (PLA) has often been blended with biodegradable poly(butylene adipate-,co,-terephthalate) (PBAT) to improve its toughness. However, the strength and heat resistance of PLA are always sacrificed. Herein, exchangeable hydroxyl-ester crosslinks are constructed in PLA/PBAT blends by successively introducing a tertiary amine-containing polyol, bis-(2-hydroxyethyl)amino-tris (hydroxymethyl)methane (BTM) and 4,4’-diphenylmethane diisocyanate (MDI) ,via, reactive blending. BTM can react with both PLA and PBAT by transesterification, generating PLA or PBAT chains with terminal or pendant hydroxyl groups, which can then react with MDI to form networks. With internal catalysis of tertiary amine moiety in BTM, transesterification between the residual hydroxyl groups and ester bonds can occur at high temperatures, endowing the PLA/PBAT network with vitrimeric properties. Owning to the transesterification and chain extension reactions with MDI between PLA and PBAT, the interfacial adhesion is greatly improved. As a result of the excellent interfacial adhesion and the network structure, the prepared PLA/PBAT blends show greatly enhanced heat resistance and toughness (more than 40 times that of PLA) while maintaining high stiffness comparable to PLA. Furthermore, the prepared PLA/PBAT blends exhibit promising reconfigurable shape memory behavior. The present work provides a new and facile way to achieve high-performance and functional biodegradable polymeric materials.
PolylactideDynamic covalent bondsStrengthening and tougheningHeat resistanceShape memory
Chemistrycanhelpmakeplasticssustainable-butitisn'tthewholesolution.Nature2021,590,363−364..
Silva,A.L.P.;Prata,J.C.;Walker,T.R.;Duarte,A.C.;Ouyang,W.;Barcelo,D.;Rocha-Santos,T.IncreasedplasticpollutionduetoCovid-19pandemic:challengesandrecommendations.Chem. Eng. J.2021,405,126683..
Flury,M.;Narayan,R.Biodegradableplasticasanintegralpartofthesolutiontoplasticwastepollutionoftheenvironment.Curr. Opin. Green Sustain. Chem.2021,30,2452−2236..
Ghosh,K.;Jones,B.H.Roadmaptobiodegradableplastics—currentstateandresearchneeds.ACS Sustainable Chem. Eng.2021,9,6170−6187..
Altman,R.Themythofhistoricalbio-basedplasticsearlybio-basedplastics,whichwereneithercleannorgreen,offerlessonsfortoday.Science2021,373,47−49..
Farah,S.;Anderson,D.G.;Langer,R.PhysicalandmechanicalpropertiesofPLA,andtheirfunctionsinwidespreadapplications—acomprehensivereview.Adv. Drug Deliv. Rev.2016,107,367−392..
Tripathi,N.;Misra,M.;Mohanty,A.K.Durablepolylacticacid(PLA)-basedsustainableengineeredblendsandbiocomposites:recentdevelopments,challenges,andopportunities.ACS Eng. Au2021,1,7−38..
Yeo,J.C.C.;Muiruri,J.K.;Koh,J.J.;Thitsartarn,W.;Zhang,X.K.;Kong,J.H.;Lin,T.T.;Li,Z.B.;He,C.B.Bend,twist,andturn:firstbendableandmalleabletoughenedPLAgreencomposites.Adv. Funct. Mater.2020,30,2001565..
Qu,Y.D.;Chen,Y.H.;Ling,X.Y.;Wu,J.L.;Hong,J.T.;Wang,H.T.;Li,Y.J.Reactivemicro-crosslinkedelastomerforsupertoughenedpolylactide.Macromolecules2022,55,7711−7723..
Dong,X.Y.;Wu,Z.G.;Wang,Y.;Li,T.;Yuan,H.;Zhang,X.H.;Ma,P.M.;Chen,M.Q.;Dong,W.F.Designofdegradablecore-shellstarchnanoparticlesbyradicalring-openingpolymerizationof2-methylene-1,3-dioxepaneandtheirtougheningofpoly(lacticacid).Compos. Commun.2021,27,100808..
Hamad,K.;Kaseem,M.;Ayyoob,M.;Joo,J.;Deri,F.Polylacticacidblends:thefutureofgreen,lightandtough.Prog. Polym. Sci.2018,85,83−127..
Yang,H.R.;Jia,G.;Wu,H.;Ye,C.C.;Yuan,K.;Liu,S.L.;Zhou,L.M.;Xu,H.;Gao,L.J.;Cui,J.;Fang,S.M.Designoffullybiodegradablesuper-toughenedPLA/PBATblendswithasymmetriccompositionviareactivecompatibilizationandcontrollingmorphology.Mater. Lett.2022,329,133067..
Chen,J.L.;Rong,C.Y.;Lin,T.T.;Chen,Y.H.;Wu,J.L.;You,J.C.;Wang,H.T.;Li,Y.J.Stableco-continuousPLA/PBATblendscompatibilizedbyinterfacialstereocomplexcrystallites:towardfullbiodegradablepolymerblendswithsimultaneouslyenhancedmechanicalpropertiesandcrystallizationrates.Macromolecules2021,54,2852−2861..
Mohammadi,M.;Bruel,C.;Heuzey,M.C.;Carreau,P.J.CNCdispersioninPLAandPBATusingtwosolvents:morphologicalandrheologicalproperties.Cellulose2020,27,9877−9892..
Dong,X.Y.;Liu,L.;Wang,Y.;Li,T.;Wu,Z.G.;Yuan,H.;Ma,P.M.;Shi,D.J.;Chen,M.Q.;Dong,W.F.Thecompatibilizationofpoly(propylenecarbonate)/poly(lacticacid)blendsinpresenceofcore-shellstarchnanoparticles.Carbohydr. Polym.2021,254,8..
Cvek,M.;Paul,U.C.;Zia,J.;Mancini,G.;Sedlarik,V.;Athanassiou,A.BiodegradablefilmsofPLA/PPCandcurcuminaspackagingmaterialsandsmartindicatorsoffoodspoilage.ACS Appl. Mater. Interfaces2022,14,14654−14667..
Mulchandani,N.;Masutani,K.;Kumar,S.;Yamane,H.;Sakurai,S.;Kimura,Y.;Katiyar,V.ToughenedPLA-b-PCL-b-PLAtriblockcopolymerbasedbiomaterials:effectofself-assemblednanostructureandstereocomplexationonthemechanicalproperties.Polym. Chem.2021,12,3806−3824..
Zhang,C.M.;Zhai,T.L.;Turng,L.S.;Dan,Y.Morphological,mechanical,andcrystallizationbehaviorofpolylactide/polycaprolactoneblendscompatibilizedbyL-lactide/caprolactonecopolymer.Ind. Eng. Chem. Res.2015,54,9505−9511..
VidhyaNagarajan,K.Z.,ManjusriMisra,AmarK.Mohanty.OvercomingthefundamentalchallengesinimprovingtheimpactstrengthandcrystallinityofPLAbiocomposites:influenceofnucleatingagentandmoldtemperature.ACS Appl. Mater. Interfaces2015,7,11203−11214..
Si,W.J.;Zhang,H.;Li,Y.D.;Huang,C.L.;Weng,Y.X.;Zeng,J.B.Highlytoughenedandheatresistantpoly(L-lactide)/poly(ε-caprolactone)blendsviaengineeringbalancebetweenkineticsandthermodynamicsofphasicmorphologywithstereocomplexcrystallite.Compos. B Eng.2020,197,1359−8368..
Zhao,X.P.;Liu,J.C.;Li,J.C.;Liang,X.Y.;Zhou,W.Y.;Peng,S.X.Strategiesandtechniquesforimprovingheatresistanceandmechanicalperformancesofpoly(lacticacid)(PLA)biodegradablematerials.Int. J. Biol. Macromol.2022,218,115−134..
Bednarek,M.;Borska,K.;Kubisa,P.Newpolylactide-basedmaterialsbychemicalcrosslinkingofPLA.Polym. Rev.2021,61,493−519..
Tillet,G.;Boutevin,B.;Ameduri,B.Chemicalreactionsofpolymercrosslinkingandpost-crosslinkingatroomandmediumtemperature.Prog. Polym. Sci.2011,36,191−217..
Nagasawa,N.;Kasai,N.;Yagi,T.;Yoshii,F.;Tamada,M.Radiation-inducedcrosslinkingandpost-processingofpoly(L-lacticacid)composite.Radiat. Phys. Chem.2011,80,145−148..
Montarnal,D.;Capelot,M.;Tournilhac,F.;Leibler,L.Silica-likemalleablematerialsfrompermanentorganicnetworks.Science2011,334,965−968..
VanZee,N.J.;Nicolay,R.Vitrimers:permanentlycrosslinkedpolymerswithdynamicnetworktopology.Prog. Polym. Sci.2020,104,67−79..
Rottger,M.;Domenech,T.;vanderWeegen,R.;Nicolay,A.B.R.;Leibler,L.High-performancevitrimersfromcommoditythermoplasticsthroughdioxaborolanemetathesis.Science2017,356,62−65..
Lessard,J.J.;Garcia,L.F.;Easterling,C.P.;Sims,M.B.;Bentz,K.C.;Arencibia,S.;Savin,D.A.;Sumerlin,B.S.Catalyst-freevitrimersfromvinylpolymers.Macromolecules2019,52,2105−2111..
Wang,S.;Ma,S.Q.;Qiu,J.F.;Tian,A.P.;Li,Q.;Xu,X.W.;Wang,B.B.;Lu,N.;Liu,Y.L.;Zhu,J.Upcyclingofpost-consumerpolyolefinplasticstocovalentadaptablenetworksvia in situcontinuousextrusioncross-linking.Green Chem.2021,23,2931−2937..
Saed,M.O.;Lin,X.Y.;Terentjev,E.M.Dynamicsemicrystallinenetworksofpolypropylenewiththiol-anhydrideexchangeablecrosslinks.ACS Appl. Mater. Interfaces2021,13,42055−42062..
Demongeot,A.;Groote,R.;Goossens,H.;Hoeks,T.;Tournilhac,F.;Leibler,L.Cross-linkingofpoly(butyleneterephthalate)byreactiveextrusionusingZn(II)epoxy-vitrimerchemistry.Macromolecules2017,50,6117−6127..
Qiu,J.F.;Ma,S.Q.;Wang,S.;Tang,Z.B.;Li,Q.;Tian,A.P.;Xu,X.W.;Wang,B.B.;Lu,N.;Zhu,J.Upcyclingofpolyethyleneterephthalatetocontinuouslyreprocessablevitrimersthroughreactiveextrusion.Macromolecules2021,54,703−712..
Brutman,J.P.;Delgado,P.A.;Hillmyer,M.A.Polylactidevitrimers.ACS Macro Lett.2014,3,607−610..
Borska,K.;Bednarek,M.;Pawlak,A.Reprocessablepolylactide-basednetworkscontainingurethaneanddisulfidelinkages.Eur. Polym. J.2021,156,0014−3057..
Liu,Y.B.;Peng,L.M.;Bao,R.Y.;Yang,M.B.;Yang,W.Vitrimericpolylactidebytwo-stepalcoholysisandtransesterificationduringreactiveprocessingforenhancedmeltstrength.ACS Appl. Mater. Interfaces2022,14,45966−45977..
Chen,X.;Zeng,Z.;Ju,Y.;Zhou,M.;Bai,H.;Fu,Q.DesignofbiodegradablePLA/PBATblendswithbalancedtoughnessandstrengthviainterfacialcompatibilizationanddynamicvulcanization.Polymer2023,266,125620..
Ai,X.;Li,X.;Yu,Y.L.;Pan,H.W.;Yang,J.;Wang,D.M.;Yang,H.L.;Zhang,H.L.;Dong,L.S.Themechanical,thermal,rheologicalandmorphologicalpropertiesofPLA/PBATblownfilmsbyusingbis(tert-butyldioxyisopropyl)benzeneascrosslinkingagent.Polym. Eng. Sci.2019,59,E227−E236..
Carbonell-Verdu,A.;Ferri,J.M.;Dominici,F.;Boronat,T.;Sanchez-Nacher,L.;Balart,R.;Torre,L.ManufacturingandcompatibilizationofPLA/PBATbinaryblendsbycottonseedoil-basedderivatives.Express Polym. Lett.2018,12,808−823..
daSilva,J.M.F.;Soares,B.G.Epoxidizedcardanol-basedprepolymeraspromisingbiobasedcompatibilizingagentforPLA/PBATblends.Polym. Test.2021,93,7..
Qi,J.;Pan,Y.T.;Luo,Z.L.;Wang,B.B.FacileandscalablefabricationofbioderivedflameretardantbasedonadenineforenhancingfiresafetyoffullybiodegradablePLA/PBAT/TPSternaryblends.J. Appl. Polym. Sci.2021,138,17..
Han,Y.;Shi,J.W.;Mao,L.X.;Wang,Z.;Zhang,L.Q.ImprovementofcompatibilityandmechanicalperformancesofPLA/PBATcompositeswithepoxidizedsoybeanoilascompatibilizer.Ind. Eng. Chem. Res.2020,59,21779−21790..
Ludwiczak,J.;Frackowiak,S.;Leluk,K.Studyofthermal,mechanicalandbarrierpropertiesofbiodegradablePLA/PBATfilmswithhighlyorientedMMT.Materials2021,14,12..
Aldas,M.;Ferri,J.M.;Motoc,D.L.;Peponi,L.;Arrieta,M.P.;Lopez-Martinez,J.Gumrosinasasizecontrolagentofpoly(butyleneadipate-co-terephthalate)(PBAT)domainstoincreasethetoughnessofpackagingformulationsbasedonpolylacticacid(PLA).Polymers2021,13,19..
Aliotta,L.;Canesi,I.;Lazzeri,A.Studyonthepreferentialdistributionofacetyltributylcitrateinpoly(lactic)acid-poly(butyleneadipate-co-terephthalate)blends.Polym. Test.2021,98,14..
Sarul,D.S.;Arslan,D.;Vatansever,E.;Kahraman,Y.;Durmus,A.;Salehiyan,R.;Nofar,M.PreparationandcharacterizationofPLA/PBAT/CNCblendnanocomposites.Colloid. Polym. Sci.2021,299,987−998..
He,H.Z.;Liu,B.D.;Xue,B.;Zhang,H.StudyonstructureandpropertiesofbiodegradablePLA/PBAT/organic-modifiedMMTnanocomposites.J. Thermoplast. Compos. Mater.2022,35,503−520..
Nofar,M.;Salehiyan,R.;Ciftci,U.;Jalali,A.;Durmus,A.DuctilityimprovementsofPLA-basedbinaryandternaryblendswithcontrolledmorphologyusingPBAT,PBSA,andnanoclay.Compos. B Eng.2020,182,13..
Wang,X.;Peng,S.X.;Chen,H.;Yu,X.L.;Zhao,X.P.Mechanicalproperties,rheologicalbehaviors,andphasemorphologiesofhigh-toughnessPLA/PBATblendsbyin-situreactivecompatibilization.Compos. B. Eng.2019,173,10..
Thiyagu,T.T.;Kumar,J.;Gurusamy,P.;Sathiyamoorthy,V.;Maridurai,T.;Prakash,V.R.A.Effectofcashewshellbiomasssynthesizedcardanoloilgreencompatibilizeronflexibility,barrier,thermal,andwettabilityofPLA/PBATbiocompositefilms.Biomass Convers. Biorefin.2021,23,11..
Zheng,N.;Fang,Z.Z.;Zou,W.K.;Zhao,Q.;Xie,T.Thermosetshape-memorypolyurethanewithintrinsicplasticityenabledbytranscarbamoylation.Angew. Chem. Int. Ed.2016,55,11421−11425..
Cao,L.M.;Liu,C.;Zou,D.J.;Zhang,S.D.;Chen,Y.K.UsingcellulosenanocrystalsassustainableadditivetoenhancemechanicalandshapememorypropertiesofPLA/ENRthermoplasticvulcanizates.Carbohydr. Polym.2020,230,8..
He,S.Y.;Hu,S.K.;Wu,Y.W.;Jin,R.H.;Niu,Z.H.;Wang,R.G.;Xue,J.J.;Wu,S.Z.;Zhao,X.Y.;Zhang,L.Q.Polyurethanesbasedonpolylacticacidfor3Dprintingandshape-memoryapplications.Biomacromolecules2022,34,11..
0
Views
9
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution