FOLLOWUS
a.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
b.Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
lyuxiaolin@fzu.edu.cn (X.L.L.)
zshen@pku.edu.cn (Z.H.S.)
Published:1 May 2024,
Published Online:28 January 2024,
Received:9 November 2023,
Revised:7 December 2023,
Accepted:21 December 2023
Scan for full text
Lyu, X. L.; Yang, S. C.; Xiao, A. Q.; Hou, P. P.; Zhang, W.; Pan, H. B.; Shen, Z. H.; Fan, X. H.; Zhou, Q. F. Ordered bicontinuous network structures regulated by orientational interactions in a rod-coil block copolymer. Chinese J. Polym. Sci. 2024, 42, 636–642
Xiao-Lin Lyu, Shi-Chu Yang, An-Qi Xiao, et al. Ordered Bicontinuous Network Structures Regulated by Orientational Interactions in a Rod-Coil Block Copolymer. [J]. Chinese Journal of Polymer Science 42(5):636-642(2024)
Lyu, X. L.; Yang, S. C.; Xiao, A. Q.; Hou, P. P.; Zhang, W.; Pan, H. B.; Shen, Z. H.; Fan, X. H.; Zhou, Q. F. Ordered bicontinuous network structures regulated by orientational interactions in a rod-coil block copolymer. Chinese J. Polym. Sci. 2024, 42, 636–642 DOI: 10.1007/s10118-024-3082-z.
Xiao-Lin Lyu, Shi-Chu Yang, An-Qi Xiao, et al. Ordered Bicontinuous Network Structures Regulated by Orientational Interactions in a Rod-Coil Block Copolymer. [J]. Chinese Journal of Polymer Science 42(5):636-642(2024) DOI: 10.1007/s10118-024-3082-z.
The ordered bicontinuous phase is rarely obtained in block copolymers because of the competition between the minimization of interfacial energy and packing frustration. Orientational interaction is regulated to compensate packing frustration for stabilizing ordered bicontinuous network structures.
The rich phase behavior of block copolymers (BCPs) has drawn great attention in recent years. However
the double diamond (DD) phase is rarely obtained because of the competition between the minimization of interfacial energy and packing frustration. Here
a rod-coil BCP containing mesogen-jacketed liquid crystalline polymer is designed to acquire ordered bicontinuous network nanostructures. The reduction of internal energy originating from the orientational interaction among the rod blocks can compensate for the free energy penalty of packing frustration to stabilize the DD structure. The resulting BCP can also experience lamellae-to-DD and double gyroid-to-lamellae transitions by changing the annealing temperature. These results make the rod-coil BCP an excellent candidate for the self-assembly of ordered network structures
demonstrating great potential in nanopatterning and metamaterials.
Block copolymerRod-coilOrdered bicontinuous phaseDouble diamondDouble gyroid
Jeon, H. I.; Jo, S.; Jeon, S.; Jun, T.; Moon, J.; Cho, J. H.; Ahn, H.; Lee, S.; Ryu, D. Y.; Russell, T. P. Repairable macroscopic monodomain arrays from block copolymers enabled by photoplastic and photodielectric effects.ACS Nano2023, 17, 8367−8375..
Kuo, S. W. Construction archimedean tiling patterns based on soft materials from block copolymers and covalent organic frameworks.Giant2023, 15, 100170..
Sadek, H.; S, K. S.; Wang, C. W.; Lee, C. C.; Chang, S. Y.; Ho, R. M. Bioinspired nanonetwork hydroxyapatite from block copolymer templated synthesis for mechanical metamaterials.ACS Nano2022, 16, 18298−18306..
Sadek, H.; Siddique, S. K.; Wang, C. W.; Chiu, P. T.; Lee, C. C.; Ho, R. M. Starfish-inspired diamond-structuredcalcite single crystals from a bottom-up approach as mechanical metamaterials.ACS Nano2023, 17, 15678−15686..
Xu, G.; Li, M.; Wang, Q.; Feng, F.; Lou, Q.; Hou, Y.; Hui, J.; Zhang, P.; Wang, L.; Yao, L.; Qin, S.; Ouyang, X.; Wu, D.; Ling, D.; Wang, X. A dual-kinetic control strategy for designing nano-metamaterials: novel class of metamaterials with both characteristic and whole sizes of nanoscale.Adv. Sci.2023, 10, e2205595..
Yang, W.; Liu, D.; Liu, Y.; Yang, S.; Liu, Y.; Shen, Z.; Yang, H.; Fan, X. H.; Zhou, Q. F. Large-area uniaxially oriented sub-5 nm line patterns of hybrid liquid crystals constructed by perylene diimide and oligo(dimethylsiloxane).Chem. Eur. J.2023, 29, e202203702..
Kim, I.; Li, S. Recent progress on polydispersity effects on block copolymer phase behavior.Polym. Rev.2019, 59, 561−587..
Wong, C. K.; Qiang, X.; Müller, A. H. E.; Gröschel, A. H. Self-assembly of block copolymers into internally ordered microparticles.Prog. Polym. Sci.2020, 102, 101211..
Cui, S.; Zhang, B.; Shen, L.; Bates, F. S.; Lodge, T. P. Core-shell gyroid in ABC bottlebrush block terpolymers.J. Am. Chem. Soc.2022, 144, 21719−21727..
Hou, L.; Xu, Z.; Li, W. Largely tunable morphologies self-assembled by A(AB) n miktoarm star copolymer in solutions.Macromolecules2023, 56, 3440−3453..
Kang, S.; Lee, J.; Yoon, H.; Jang, J.; Kim, E.; Kim, J. K. Tetragonally packed inverted cylindrical microdomains from binary block copolymer blends with enhanced hydrogen bonding.ACS Macro Lett.2023, 12, 915−920..
Ma, Z.; Zhou, D.; Xu, M.; Gan, Z.; Zheng, T.; Wang, S.; Tan, R.; Dong, X. H. Discrete linear-branched block copolymer with broken architectural symmetry.Macromolecules2023, 56, 833−840..
Mishra, A. K.; Lee, J.; Kang, S.; Kim, E.; Choi, C.; Kim, J. K. Gallol-based block copolymer with a high Flory-Huggins interaction parameter for next-generation lithography.Macromolecules2022, 55, 10797−10803..
Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Periodic area-minimizing surfaces in block copolymers.Nature1988, 334, 598−601..
Chu, C. Y.; Pei, R. Y.; Chen, H. L. Order-order transition from ordered bicontinuous double diamond to hexagonally packed cylinders in stereoregular diblock copolymer/homopolymer blends.Macromolecules2018, 51, 8493−8500..
Liu, C. Y.; Chen, H. L. Undulating the lamellar interface of polymer-surfactant complex by dendrimer.Macromolecules2017, 50, 6501−6508..
Feng, X.; Dimitriyev, M. S.; Thomas, E. L. Soft, malleable double diamond twin.Proc. Natl. Acad. Sci. U. S. A.2023, 120, e2213441120..
Yang, K. C.; Reddy, A.; Tsai, H. W.; Zhao, W.; Grason, G. M.; Ho, R. M. Breaking mirror symmetry of double gyroids viaself-assembly of chiral block copolymers.ACS Macro Lett.2022, 11, 930−934..
Feng, X.; Burke, C. J.; Zhuo, M.; Guo, H.; Yang, K.; Reddy, A.; Prasad, I.; Ho, R. M.; Avgeropoulos, A.; Grason, G. M.; Thomas, E. L. Seeing mesoatomic distortions in soft-matter crystals of a double-gyroid block copolymer.Nature2019, 575, 175−179..
Reddy, A.; Feng, X.; Thomas, E. L.; Grason, G. M. Block copolymers beneath the surface: measuring and modeling complex morphology at the subdomain scale.Macromolecules2021, 54, 9223−9257..
Matsen, M. W.; Bates, F. S. Origins of complex self-assembly in block copolymers.Macromolecules1996, 29, 7641−7644..
Martinez-Veracoechea, F. J.; Escobedo, F. A. Bicontinuous phases in diblock copolymer/homopolymer blends: simulation and self-consistent field theory.Macromolecules2009, 42, 1775−1784..
Martinez-Veracoechea, F. J.; Escobedo, F. A. Monte Carlo study of the stabilization of complex bicontinuous phases in diblock copolymer systems.Macromolecules2007, 40, 7354−7365..
Matsen, M. W. Phase-behavior of block-copolymer homopolymer blends.Macromolecules1995, 28, 5765−5773..
Chen, H.; Fan, Y.; Zhang, N.; Trepout, S.; Ptissam, B.; Brulet, A.; Tang, B. Z.; Li, M. H. Fluorescent polymer cubosomes and hexosomes with aggregation-induced emission.Chem. Sci.2021, 12, 5495−5504..
Lyu, X.; Tang, Z.; Xiao, A.; Zhang, W.; Pan, H.; Shen, Z.; Fan, X. H. Temperature-controlled formation of inverse mesophases assembled from a rod-coil block copolymer.Polym. Chem.2019, 10, 6031−6036..
Lv, F.; An, Z.; Wu, P. Scalable preparation of alternating block copolymer particles with inverse bicontinuous mesophases.Nat. Commun.2019, 10, 1397..
Lyu, X.; Xiao, A.; Zhang, W.; Hou, P.; Gu, K.; Tang, Z.; Pan, H.; Wu, F.; Shen, Z.; Fan, X. H. Head-tail asymmetry as the determining factor in the formation of polymer cubosomes or hexasomes in a rod-coil amphiphilic block copolymer.Angew. Chem. Int. Ed.2018, 57, 10132−10136..
Li, Q.; Woo, D.; Kim, J. K.; Li, W. Truly “inverted” cylinders and spheres formed in the A(AB)3/AC blends of B/C hydrogen bonding interactions.Macromolecules2022, 55, 6525−6535..
Takagi, H.; Yamamoto, K. Effect of block copolymer composition and homopolymer molecular weight on ordered bicontinuous double-diamond structures in binary blends of polystyrene-polyisoprene block copolymer and polyisoprene homopolymer.Macromolecules2021, 54, 5136−5143..
Lin, C. H.; Higuchi, T.; Chen, H. L.; Tsai, J. C.; Jinnai, H.; Hashimoto, T. Stabilizing the ordered bicontinuous double diamond structure of diblock copolymer by configurational regularity.Macromolecules2018, 51, 4049−4058..
Chiu, P. T.; Sung, Y. C.; Yang, K. C.; Tsai, J. C.; Wang, H. F.; Ho, R. M. Curving and twisting in self-assembly of triblock terpolymers driven by a chiral end block.Macromolecules2022, 55, 1185−1195..
Li, Z.; Wu, Z.; Mo, G.; Xing, X.; Liu, P. A small-angle X-ray scattering station at beijing synchrotron radiation facility.Instrum. Sci. Technol.2014, 42, 128−141..
Tian, F.; Li, X. H.; Wang, Y. Z.; Yang, C. M.; Zhou, P.; Lin, J. Y.; Zeng, J. R.; Hong, C. X.; Hua, W. Q.; Li, X. Y.; Miao, X. R.; Bian, F. G.; Wang, J. Small angle X-ray scattering beamline at SSRF.Nucl. Sci. Tech.2015, 26, 030101..
Chu, C. Y.; Jiang, X.; Jinnai, H.; Pei, R. Y.; Lin, W. F.; Tsai, J. C.; Chen, H. L. Real-space evidence of the equilibrium ordered bicontinuous double diamond structure of a diblock copolymer.Soft Matter2015, 11, 1871−1876..
Chu, C. Y.; Lin, W. F.; Tsai, J. C.; Lai, C. S.; Lo, S. C.; Chen, H. L.; Hashimoto, T. Order-order transition between equilibrium ordered bicontinuous nanostructures of double diamond and double gyroid in stereoregular block copolymer.Macromolecules2012, 45, 2471−2477..
Lee, M.; Cho, B. K.; Kim, H.; Yoon, J. Y.; Zin, W. C. Self-organization of rod-coil molecules with layered crystalline states into thermotropic liquid crystalline assemblies.J. Am. Chem. Soc.1998, 120, 9168−9179..
Shi, L. Y.; Zhou, Y.; Fan, X. H.; Shen, Z. Remarkably rich variety of nanostructures and order-order transitions in a rod-coil diblock copolymer.Macromolecules2013, 46, 5308−5316..
Gao, J.; Tang, P.; Yang, Y. Non-lamellae structures of coil-semiflexible diblock copolymers.Soft Matter2013, 9, 69−81..
Olsen, B. D.; Shah, M.; Ganesan,V.; Segalman, R. A. Universalization of the phase diagram for a model rod-coil diblock copolymer.Macromolecules2008, 41, 6809−6817..
Yu, H.; Kobayashi, T.; Yang, H. Liquid-crystalline ordering helps block copolymer self-assembly.Adv. Mater.2011, 23, 3337−3344..
Khandpur, A. K.; Forster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition.Macromolecules1995, 28, 8796−8806..
Martin, J. M.; Li, W.; Delaney, K. T.; Fredrickson, G. H. SCFT study of diblock copolymer melts in electric fields: selective stabilization of orthorhombic Fdddnetwork phase.Macromolecules2018, 51, 3369−3378..
Wang, Y. C.; Matsuda, K.; Kim, M. I.; Miyoshi, A.; Akasaka, S.; Nishitsuji, S.; Saijo, K.; Hasegawa, H.; Ito, K.; Hikima, T.; Takenaka, M. Fdddphase boundary of polystyrene-block-polyisoprene diblock copolymer melts in the polystyrene-rich region.Macromolecules2015, 48, 2211−2216..
Matsen, M. W.; Bates, F. S. Unifying weak- and strong-segregation block copolymer theories.Macromolecules1996, 29, 1091−1098..
0
Views
223
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution