FOLLOWUS
Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, Saint Petersburg 199004, Russia
pmarip@mail.ru (M.P.S.)
smirnov_michael@mail.ru (M.A.S.)
Published:01 August 2024,
Published Online:10 May 2024,
Received:10 December 2023,
Revised:05 March 2024,
Accepted:27 March 2024
Scan for full text
Sokolova, M. P.; Vorobiov, V. K.; Smirnov, N. N.; Kuryndin, I. S.; Bobrova, N. V.; Smirnov, M. A. Self-healable and robust film based on electroactive polymer brush as electrode for flexible supercapacitor. Chinese J. Polym. Sci. 2024, 42, 1049–1059
Maria P. Sokolova, Vitaly K. Vorobiov, Nikolay N. Smirnov, et al. Self-healable and Robust Film Based on Electroactive Polymer Brush as Electrode for Flexible Supercapacitor. [J]. Chinese Journal of Polymer Science 42(8):1049-1059(2024)
Sokolova, M. P.; Vorobiov, V. K.; Smirnov, N. N.; Kuryndin, I. S.; Bobrova, N. V.; Smirnov, M. A. Self-healable and robust film based on electroactive polymer brush as electrode for flexible supercapacitor. Chinese J. Polym. Sci. 2024, 42, 1049–1059 DOI: 10.1007/s10118-024-3113-9.
Maria P. Sokolova, Vitaly K. Vorobiov, Nikolay N. Smirnov, et al. Self-healable and Robust Film Based on Electroactive Polymer Brush as Electrode for Flexible Supercapacitor. [J]. Chinese Journal of Polymer Science 42(8):1049-1059(2024) DOI: 10.1007/s10118-024-3113-9.
A novel polyimide-Cu complex material predicated on side-chain-type pyridine-Cu coordination achieves superior dielectric performance
which endows an elevated degree of freedom with suppressed relaxation activation energy and long-range electron delocalization
enhancing molecular dipole moment with more flexibility.
The aim of this study was to develop self-healable and robust electroconductive film based on polyaniline copolymer for application as electrode in flexible supercapacitor. For this purpose
the electroconductive polymer brushes (EPB) was elaborated. The synt
hesis of EPB is based on graft polymerizations of acrylamide (AAm) on poly(vinyl alcohol) (PVA) with formation of PVA-PAAm polymer brush and subsequent graft copolymerization of aniline and
p
-phenylenediamine on PVA-PAAm resulting in formation of EPB with electroconducting copoly(aniline-
co
-
p
-phenylenediamine) (PAPhDA). It was found that the ratio between PVA and PAAm at the first stage greatly influence the electrochemical performance of the EPBs. Electroconducting films were prepared by casting of EPB solution with subsequent drying. Investigation of electrical current distribution through the film with AFM reveal more uniform distribution of PAPhDA in EPB in comparison with reference PVA-PAPhDA and PAAm-PAPhDA samples. It was demonstrated that mechanical characteristics and electrical conductivity values of films restore at large extent after curring and self-healing under optimal relative humidity level (58%). The flexile supercapacitor cell with EPB film electrodes demonstrate specific capacitance 602 mF·cm
–2
at the current density of 1 mA·cm
–2
and retention 94% of initial capacitance after 5000 charge/discharge cycles.
Polymer brushPolyanilineFlexible supercapacitorSelf-healingElectroconducting film
Yang, L; Xin, Z; Biporjoy, S; Noémy, G. L; Fabio, C. Recent progress on self-healable conducting polymers.Adv. Mater.2022,34, 2108932..
Arvas, M.B.; Yazar, S.; Sahin, Y. Electrochemical synthesis and characterization of self-doped aniline 2-sulfonic acid-modified flexible electrode with high areal capacitance and rate capability for supercapacitors.Synth. Met.2022,285, 117017..
Hou, X.; Zhou, Y.; Liu, Y.; Wang, L.; Wang, J. Coaxial electrospun flexible PANI//PU fibers as highly sensitive pH wearable sensor.J. Mater. Sci.2020,55, 16033−16047..
Sofyan, N.; Nugraha, R.A.; Ridhova, A.; Yuwono, A.H.; Udhiarto, A. Characteristics of PANi/rGO nanocomposite as protective coating and catalyst in dye-sensitized solar cell counter electrode deposited on AISI 1086 steel substrate.Int. J. Eng.2018,31, 1741−1748..
Shahabuddin, S.; Gaur, R.; Mukherjee, N.; Chandra, P.; Khanam, R. Conducting polymers-based nanocomposites: innovative materials for waste water treatment and energy storage.Mater. Today Proc.2022,62, 6950−6955..
Abdel Rehim, M. H.; Yassin, M. A.; Zahran, H.; Kamel, S.; Moharam, M. E.; Turky, G. Rational design of active packaging films based on polyaniline-coated polymethyl methacrylate/nanocellulose composites.Polym. Bull.2020,77, 2485−2499..
Guarino, V.; Alvarez-Perez, M.A.; Borriello, A.; Napolitano, T.; Ambrosio, L. Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration.Adv. Healthc. Mater.2013,2, 218−227..
Ghosh, S.; Roy, S. Nonlinear analysis of a fiber-reinforced tubular conducting polymer-based soft actuator. 2022 .
Farooq, A. S.; Zhang, P. A comprehensive review on the prospects of next-generation wearable electronics for individualized health monitoring, assistive robotics, and communication.Sens. Actuators A Phys.2022,344, 113715..
Vorobiov, V. K.; Smirnov, M. A.; Bobrova, N. V.; Sokolova, M. P. Chitosan-supported deep eutectic solvent as bio-based electrolyte for flexible supercapacitor.Mater. Lett.2021,283, 128889..
Zhang, C.; Chen, Z.; Rao, W.; Fan, L.; Xia, Z.; Xu, W.; Xu, J. A high-performance all-solid-state yarn supercapacitor based on polypyrrole-coated stainless steel/cotton blended yarns.Cellulose2019,26, 1169−1181..
Batishcheva, E. V; Smirnov, N. N.; Bobrova, N. V; Sokolova, M. P.; Smirnov, M. A. Ion-conducting membranes based on bacterial cellulose nanofibers modified by poly(sodium acrylate-co-2-acrylamido-2-methylpropanesulfonic acid).Chinese J. Polym. Sci.2023,42, 1−11..
Sidheekha, M.P.; Rajan, L.; Ismail, Y.A. Reaction driven biomimetic sensing characteristics of polyaniline/chitosan hybrid film: sensing chemical and electrical reaction conditions.Mater. Chem. Phys.2022,279, 125769..
Smirnov, M. A.; Sokolova, M. P.; Geydt, P.; Smirnov, N. N.; Bobrova, N. V.; Toikka, A. M.; Lahderanta, E. Dual doped electroactive hydrogelic fibrous mat with high areal capacitance.Mater Lett.2017,199, 192−195..
Riaz, U.; Singh, N.; Rashnas Srambikal, F.; Fatima, S. A review on synthesis and applications of polyaniline and polypyrrole hydrogels.Polym. Bull.2023,80, 1085−1116..
Upadhyay, J.; Das, T. M.; Borah, R.; Paul, K.; Acharjya, K. Ternary nanocomposites of rGO:RuO2:Pani based flexible electrode for supercapacitor applications.Solid State Commun. 2021 ,334–335, 114382..
Smirnov, M.A.; Tarasova, E. V.; Vorobiov, V.K.; Kasatkin, I.A.; Mikli, V.; Sokolova, M.P.; Bobrova, N. V.; Vassiljeva, V.; Krumme, A.; Yakimanskiy, A. V. Electroconductive fibrous mat prepared by electrospinning of polyacrylamide-g-polyaniline copolymers as electrode material for supercapacitors.J. Mater. Sci.2019,54, 4859−4873..
Bavatharani, C.; Muthusankar, E.; Wabaidur, S. M.; Alothman, Z. A.; Alsheetan, K. M.; AL-Anazy, M. M.; Ragupathy, D. Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: a review.Synth. Met.2021,271, 116609..
Smirnov, M. A.; Sokolova, M. P.; Bobrova, N. V.; Toikka, A. M.; Morganti, P.; Lahderanta, E. Synergistic effect of chitin nanofibers and polyacrylamide on electrochemical performance of their ternary composite with polypyrrole.J. Energy Chem.2018,27, 843−853..
Pyarasani, R. D.; Jayaramudu, T.; John, A. Polyaniline-based conducting hydrogels.J. Mater. Sci.2019,54, 974−996..
Zhang, L.; Li, T.; Yu, Y.; Shi, K.; Bei, Z.; Qian, Y.; Qian, Z. An injectable conductive hydrogel restores electrical transmission at myocardial infarct site to preserve cardiac function and enhance repair.Bioact. Mater.2023,20, 339−354..
Elyashevich, G. K.; Sidorovich, A. V.; Smirnov, M. A.; Kuryndin, I. S.; Bobrova, N. V.; Trchová, M.; Stejskal, J. Thermal and structural stability of composite systems based on polyaniline deposited on porous polyethylene films.Polym. Degrad. Stabil.2006,91, 2786−2792..
Elyashevich, G.K.; Smirnov, M.A.; Kuryndin, I.S.; Bukošek, V. Electroactive composite systems containing high conductive polymer layers on poly(ethylene) porous films.Polym. Adv. Technol.2006,17, 700−704..
Maity, N.; Dawn, A. Conducting polymer grafting: recent and key developments.Polymers2020,12, 709..
Isakova, A. A.; Gribkova, O. L.; Aliev, A. D.; Indenbom, A. V.; Shevlyakova, N. V.; Tverskoi, V. A.; Nekrasov, A. A. The synthesis of polyaniline in polyethylene films with grafted sulfonated polystyrene and properties of these films.Prot. Metals Phys. Chem. Surf.2020,56, 725−733..
Mostafaee, H.; Moghadam, P. N.; Khalafy, J. Improvement of polyaniline processability by graft reaction of polyaniline on poly(glycidyl methacrylate-alt-maleic anhydride) copolymer: synthesis and characterization.Polym. Sci. Ser. B2019,61, 827−834..
Xiang, Q.; Xie, H. Q. Preparation and characterization of alkali soluble polyacrylamide-g-polyaniline.Eur. Polym. J.1996,32, 865−868..
Shen, Z.; Zhang, Z.; Zhang, N.; Li, J.; Zhou, P.; Hu, F.; Rong, Y.; Lu, B.; Gu, G. High-stretchability, ultralow-hysteresis conducting polymer hydrogel strain sensors for soft machines.Adv. Mater.2022,33, 2203650..
Abdelhamied, M. M.; Abdelreheem, A. M.; Atta, A. Influence of ion beam and silver nanoparticles on dielectric properties of flexible PVA/PANI polymer composite films.Plastics, Rubber and Compos.2022,51, 1−12..
Akram, D.; Hameed, N. Preparation and characterization of PANI/PVA blends as electrolyte materials.J. Appl. Sci. Nanotechnol.2022,2, 38−46..
Xie, Z.; Hu, B.L.; Li, R.W.; Zhang, Q. Hydrogen bonding in self-healing elastomers.ACS Omega2021,6, 9319−9333..
Smirnov, M. A.; Nikolaeva, A. L.; Bobrova, N. V.; Vorobiov, V. K.; Smirnov, A. V.; Lahderanta, E.; Sokolova, M. P. Self-healing films based on chitosan containing citric acid/choline chloride deep eutectic solvent.Polym. Test.2021,97, 107156..
Liu, Y.; Mao, J.; Guo, Z.; Hu, Y.; Wang, S. Polyvinyl alcohol/carboxymethyl chitosan hydrogel loaded with silver nanoparticles exhibited antibacterial and self-healing properties.Int. J. Biol. Macromol.2022,220, 211−222..
Gaylord, N. Proposed new mechanism for catalyzed and uncatalyzed graft polymerization onto cellulose.J. Polym. Sci., Part C: Polym. Symp.1972,172, 153−172..
Smirnov, M. A.; Sokolova, M. P.; Bobrova, N. V.; Kasatkin, I. A.; Lahderanta, E.; Elyashevich, G. K. Capacitance properties and structure of electroconducting hydrogels based on copoly(aniline-P-phenylenediamine) and polyacrylamide.J. Power Sources2016,304, 102−110..
Sokolova, M. P.; Smirnov, M. A.; Samarov, A. A.; Bobrova, N. V; Vorobiov, V. K.; Popova, E. N.; Filippova, E.; Geydt, P.; Lahderanta, E.; Toikka, A. M. Plasticizing of chitosan films with deep eutectic mixture of malonic acid and choline chloride.Carbohydr. Polym.2018,197, 548−557..
Lai, S.; Casu, M.; Saba, G.; Lai, A.; Husu, I.; Masci, G.; Crescenzi, V. Solid-state13C NMR study of poly(vinyl alcohol) gels.Solid State Nucl. Magn. Reson.2002,21, 187−196..
Mjakin, S. V.; Sychov, M.M.; Sheiko, N.B.; Ezhenkova, L.L.; Rodionov, A.G.; Vasiljeva, I. V. Improvement of vibrodamping properties of polyvinyl acetate-graphite composites by electron beam processing of the filler.Springerplus2016,5, 1539..
Tarasova, N.; Zanin, A.; Krivoborodov, E.; Toropygin, I.; Pascal, E.; Mezhuev, Y. The New Approach to the preparation of polyacrylamide-based hydrogels: initiation of polymerization of acrylamide with 1,3-dimethylimidazolium (phosphonooxy-)oligosulphanide under drying aqueous solutions.Polymers2021,13, 1806..
Goswami, S.; Nandy, S.; Calmeiro, T.R.; Igreja, R.; Martins, R.; Fortunato, E. Stress induced mechano-electrical writing-reading of polymer film powered by contact electrification mechanism.Sci. Rep.2016,6, 19514..
Potje-Kamloth, K; Polk, B. J; Josowicz, M; Janata, L. Doping of polyaniline in the solid state with photogenerated triflic acid.Chem. Mater.2002,14, 2782−2787..
Khalil, H.; Levon, K. Shear-induced delocalization of polarons in polyaniline-surfactant complexes.Macromolecules2002,35, 8180−8184..
Trchová, M.; Šeděnková, I.; Konyushenko, E.N.; Stejskal, J.; Holler, P.; Ćirić-Marjanović, G. Evolution of polyaniline nanotubes: the oxidation of aniline in water.J. Phys. Chem. B2006,110, 9461−9468..
Li, Y.; Bober, P.; Trchová, M.; Stejskal, J. Colloidal dispersions of conducting copolymers of aniline and p-phenylenediamine for films with enhanced conductometric sensitivity to temperature.J. Mater. Chem. C2017,5, 1668−1674..
Xue, H.; Mi, Z.; Shi, L.; Yang, X.; Chen, R.; Luo, X.; Guan, Y. A high-toughness, tailorable, wearable multifunctional sensor based on multisynergistic fabric-hydrogel constructedviadual-function boric acid bridge.Mater. Today Chem.2023,33, 101696..
Du, H.; Wang, J.; Wu, Z.; Liu, Z. Polyaniline grown on poly(vinyl alcohol)/ionic liquid composite film as electrodes for flexible and self-healable solid-state polymer supercapacitors.Polymer2022,255, 125129..
Lee, J. W.; Lee, J. U.; Jo, J. W.; Bae, S.; Kim, K. T.; Jo, W. H. In-situ preparation of graphene/poly(styrenesulfonic acid-graft-polyaniline) nanocomposite via direct exfoliation of graphite for supercapacitor application.Carbon2016,105, 191−198..
Massoumi, B.; Mohammad-Rezaei, R.; Jaymand, M. Chemical and electrochemical grafting of polyaniline onto poly(vinyl chloride): synthesis, characterization, and materials properties.Polym. Adv. Technol.2016,27, 1056−1063..
Eftekhari, A. Surface diffusion and adsorption in supercapacitors.ACS Sustainable Chem. Eng.2019,7, 3692−3701..
Cördoba-Torres, P.; Mesquita, T. J.; Nogueira, R. P. Relationship between the origin of constant-phase element behavior in electrochemical impedance spectroscopy and electrode surface structure.J. Phys. Chem. C2015,119, 4136−4147..
Zhao, J.; Cao, L.; Lai, F.; Wang, X.; Huang, S.; Du, X.; Li, W.; Lin, Z.; Zhang, P. Double-cross-linked polyaniline hydrogel and its application in supercapacitors.Ionics2022,28, 423−432..
Cao, S.; Zhao, T.; Li, Y.; Yang, L.; Ahmad, A.; Jiang, T.; Shu, Y.; Jing, Z.; Luo, H.; Lu, X.; Zhang, H. Fabrication of PANI@Ti3C2T x/PVA hydrogel composite as flexible supercapacitor electrode with good electrochemical performance.Ceram. Int.2022,48, 15721−15728..
Gao, X.; Hu, Q.; Sun, K.; Peng, H.; Xie, X.; Hamouda, H.A.; Ma, G. A novel all-in-one integrated flexible supercapacitor based on self-healing hydrogel electrolyte.J. Alloys Compd.2021,888, 161554..
Tao, X. Y.; Wang, Y.; Ma, W.; Ye, S. F.; Zhu, K. H.; Guo, L. T.; Fan, H. L.; Liu, Z. S.; Zhu, Y. B.; Wei, X. Y. Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor.J. Mater. Sci.2021,56, 16028−16043..
Wang, N.; Wang, X.; Zhang, Y.; Hou, W.; Chang, Y.; Song, H.; Zhao, Y.; Han, G. All-in-one flexible asymmetric supercapacitor based on composite of polypyrrole-graphene oxide and poly(3,4-ethylenedioxythiophene).J. Alloys Compd.2020,835, 155299..
Zhang, C.; Xu, S.; Cai, D.; Cao, J.; Wang, L.; Han, W. Planar supercapacitor with high areal capacitance based on Ti3C2/Polypyrrole composite film.Electrochim. Acta.2020,330, 135277..
Liu, G.; Zheng, L.; Sun, Y.; Zhang, M.; Xiong, C. Preparation of flexible conductive composite electrode film of PEDOT:PSS/Aramid nanofibersviavacuum-assisted filtration and acid post-treatment for efficient solid-state supercapacitor.Int. J. Hydrogen Energy2022,47, 22454−22468..
Yu, M.; Ji, X.; Ran, F. Chemically building interpenetrating polymeric networks of Bi-crosslinked hydrogel macromolecules for membrane supercapacitors.Carbohydr. Polym.2021,255, 117346..
0
Views
79
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution