Liu, X. Y.; Zhu, L.; Jie, S. Y.; Li, B. G. Controllable ring-opening polymerization of δ-valerolactone catalyzed by quinolinyl-urea/MTBD systems. Chinese J. Polym. Sci. 2024, 42, 1103–1110
Xin-Yu Liu, Liang Zhu, Su-Yun Jie, et al. Controllable Ring-opening Polymerization of δ-Valerolactone Catalyzed by Quinolinyl-Urea/MTBD Systems. [J]. Chinese Journal of Polymer Science 42(8):1103-1110(2024)
Liu, X. Y.; Zhu, L.; Jie, S. Y.; Li, B. G. Controllable ring-opening polymerization of δ-valerolactone catalyzed by quinolinyl-urea/MTBD systems. Chinese J. Polym. Sci. 2024, 42, 1103–1110 DOI: 10.1007/s10118-024-3127-3.
Xin-Yu Liu, Liang Zhu, Su-Yun Jie, et al. Controllable Ring-opening Polymerization of δ-Valerolactone Catalyzed by Quinolinyl-Urea/MTBD Systems. [J]. Chinese Journal of Polymer Science 42(8):1103-1110(2024) DOI: 10.1007/s10118-024-3127-3.
Controllable Ring-opening Polymerization of δ-Valerolactone Catalyzed by Quinolinyl-Urea/MTBD Systems
A series of quinolinyl-urea catalysts were synthesized and evaluated to be highly active in the ring-opening polymerization of δ-VL in combination with MTBD. Linear PVLs with narrow molecular weight distribution were obtained and the “living”/controllable characteristic of ROP was verified by the kinetic and chain extension experiments.
Abstract
Due to their excellent biocompatibility and biodegradability
aliphatic polyesters are widely used in the biomedical
packaging and agricultural fields
which are usually accessed by the ring-opening polymerization (ROP) of lactones and the catalysts particularly play an important role. Herein a series of quinolinyl-urea catalysts have been synthesized
via
the reaction between isocyanate and aminoquinoline with an amino group at different substitution positions and characterized. In combination with 7-methyl-1
5
7-triazabicyclo[4
4
0
]
dec-5-ene (MTBD) as a cocatalyst and benzyl alcohol (BnOH) as an initiator
-VL). The polymerization conditions were optimized by varying the type of organic base
catalyst concentration and reaction temperature. By changing the ratio of [M
]
0
/[I
]
linear polyvalerolactones (PVLs) with different molecular weights and narrow molecular weight distribution wer
e prepared. The kinetic and chain extension experiments were carried out to prove the “living”/controllable feature. And the NMR experiments were used to support the proposal of possible mechanism.
关键词
Keywords
Quinolinyl-ureaRing-opening polymerizationPVL
references
Geyer R.; Jambeck J. R.; Law K. L. Production, use, and fate of all plastics ever made.Science2017,3, e1700782..
Webb H. K.; Arnott J.; Crawford R. J.; Ivanova, E. P. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate).Polymers2012,5, 1−18..
Duis K.; Coors A. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects.Environ. Sci. Eur.2016,28, 2..
Schneiderman D. K.; Hillmyer M. A. Aliphatic polyester block polymer design.Macromolecules 2016 ,49, 2419−2428..
Larranaga A.; Lizundia E. A review on the thermomechanical properties and biodegradation behaviour of polyesters.Eur. Polym. J.2019,121, 109296..
Brannigan R. P.; Dove A. P. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates.Biomater. Sci. 2017 ,5, 9−21..
Hillmyer M. A.; Tolman W. B. Aliphatic polyester block: renewable, degradable, and sustainable.Acc. Chem. Res.2014,47, 2390−2396..
Chiulan I.; Frone A.; Brandabur C.; Panaitescu D. M. Recent advances in 3D printing of aliphatic polyesters.Bioengineering2018,5, 2..
Arrieta M.; Samper M.; Aldas M.; López J. On the use of PLA-PHB blends for sustainable food packaging applications.Materials2017,10, 1008..
Pascouau C.; Wirotius A. L.; Carlotti S. Functional polyestersviaring-opening copolymerization ofα-hydroxy-γ-butyrolactone andε-caprolactone: La[N(SiMe3)2]3as an efficient coordination-insertion catalyst.Eur. Polym. J.2023,185, 111793..
Kim S. H.; Kim S. H.; Jung Y. TGF-β3encapsulated PLCL scaffold by a supercritical CO2-HFIP co-solvent system for cartilage tissue engineering.J. Control. Release2015,206, 101−107..
Haas S.; Hain N.; Raoufi M.; Handschuh-Wang, S.; Wang, T.; Jiang, X.; Schönherr, H. Enzyme degradable polymersomes from hyaluronic acid-block-poly(ε-caprolactone) copolymers for the detection of enzymes of pathogenic bacteria.Biomacromolecules2015,16, 832−841..
Cha K. J.; Lih E.; Choi J.; Joung, Y. K.; Ahn, D. J.; Han, D. K. Shape-memory effect by specific biodegradable polymer blending for biomedical applications.Macromol. Biosci.2014,14, 667−678..
Sinha V. R.; Bansal K.; Kaushik R.; Kumria, R.; Trehan, A. Poly-ε-caprolactone microspheres and nanospheres: an overview.Int. J. Pharm.2004,278, 1−23..
Lam, C. X.; Teoh, S. H.; Hutmacher, D. W. Comparison of the degradation of polycaprolactone and polycaprolactone-(β-tricalcium phosphate) scaffolds in alkaline medium.Polym. Int.2007,56, 718−728..
Joshi, P.; Madras, G. Degradation of polycaprolactone in supercritical fluids.Polym. Degrad. Stabil.2008,93, 1901−1908..
Pena, J.; Corrales, T.; Izquierdo-Barba, I.; Doadrio, A.; Vallet-Regi, M. Long term degradation of poly(ε-caprolactone) films in biologically related fluids.Polym. Degrad. Stabil.2006,91, 1424−1432..
Dana, H. R.; Ebrahimi, F. Synthesis, properties, and applications of polylactic acid-based polymers.Polym. Eng. Sci.2023,63, 22−43..
Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.; Lohmeijer, B. G. G.; Hedrick, J. L. Organocatalytic ring-opening polymerization.Chem. Rev.2007,107, 5813−5840..
Kiesewetter, M. K.; Shin, E. J.; Hedrick, J. L.; Waymouth, R. M. Organocatalysis: opportunities and challenges for polymer synthesis.Macromolecules2010,43, 2093−2107..
Nzahou Ottou, W. N.; Sardon, H.; Mecerreyes, D.; Vignolle, J.; Taton, D. Update and challenges in organo-mediated polymerization reactions.Prog. Polym. Sci.2016,56, 64−115..
Hu, S.; Zhao, J.; Zhang, G.; Schlaad, H. Macromolecular architectures through organocatalysis.Prog. Polym. Sci.2017,74, 34−77..
Bossion, A.; Heifferon, K. V.; Meabe, L.; Zivic, N.; Taton, D.; Hedrick, J. L.; Long, T. E.; Sardon, H. Opportunities for organocatalysis in polymer synthesisviastep-growth methods.Prog. Polym. Sci.2019,90, 164−210..
Xu, J.; Wang, X.; Liu, J.; Feng, X.; Gnanou, Y.; Hadjichristidis, N. Ionic H-bonding organocatalysts for the ring-opening polymerization of cyclic esters and cyclic carbonates.Prog. Polym. Sci.2022,125, 101484..
Zhang, X.; Jones, G. O.; Hedrick, J. L.; Waymouth, R. M. Fast and selective ring-opening polymerizations by alkoxides and thioureas.Nature Chem.2016,8, 1047−1053..
Fastnacht, K. V.; Spink, S. S.; Dharmaratne, N. U.; Pothupitiya, J. U.; Datta, P. P.; Kiesewetter E. T.; Kiesewetter, M. K. Bis- and tris-urea H-bond donors for ring-opening polymerization: unprecedented activity and control from an organocatalyst.ACS Macro. Lett.2016,5, 982−986..
Dharmaratne, N. U.; Pothupitiya,J. U.; Bannin, T. J.; Kazakov, O. I.; Kiesewetter, M. K. Triclocarban: commercial antibacterial and highly effective H-bond donating catalyst for ring-opening polymerization.ACS Macro Lett.2017,6, 421−425..
Lin B.; Waymouth, R. M. Urea anions: simple, fast, and selective catalysts for ring-opening polymerizations.J. Am. Chem. Soc.2017,139, 1645−1652..
Jain, I.; Malik, Payal. Advances in urea and thiourea catalyzed ring opening polymerization: a brief overview.Eur. Polym. J.2020,133, 109791..
Hewawasam, R. S.; Kalana,U. L. D. I.; Dharmaratne, N. U.; Wright, T. J.; Bannin, T. J.; Kiesewetter E. T.; Kiesewetter, M. K.Macromolecules 2019 ,52, 9232–9237..
Du,F.; Zheng, Y.; Yuan, W.; Shan, G.; Bao, Y.; Jie S.; Pan, P. Solvent-free ring-opening polymerization of lactones with hydrogen-bonding bisurea catalyst.J. Polym. Sci., Part A: Polym. Chem.2018,57, 90−100..
Zaky, M. S.; Guichard, G.; Taton, D. Structural effect of organic catalytic pairs based on chiral amino(thio)ureas and phosphazene bases for the isoselective ring-opening polymerization of racemic lactide.Macromolecules2023,56, 3607−3616..
Feng, R.; Jie, S.; Braunstein P.; Li, B. G. Pyridyl-urea catalysts for the solvent-free ring-opening polymerization of lactones and trimethylene carbonate.Eur. Polym. J.2019,121, 109293..
Feng, R.; Jie, S.; Braunstein P.; Li, B.-G. High molecular-weight cyclic polyesters from solvent-free ring-opening polymerization of lactones with a pyridyl-urea/MTBD.Macromol. Chem. Phys.2020,221, 2000075..
Feng, R.; Jie, S.; Braunstein P.; Li, B. G. Gradient copolymers ofε-caprolactone andδ-valerolactoneviasolvent-free ring-opening copolymerization with a pyridyl-urea/MTBD system.J. Polym. Sci.2020,58, 2108−2115..
Ji, C.; Jie, S.; Braunstein P.; Li, B. G. Fast and controlled ring-opening polymerization ofδ-valerolactone catalyzed by benzoheterocyclic urea/MTBD catalysts.Catal. Sci. Technol.2020,10, 7555−7565.
Ji, C.; Jie, S.; Li, B. G. Ring-opening copolymerization of L-lactide andδ-valerolactone catalyzed by benzoxazolyl urea catalyst/MTBD.Acta Polymerica Sinica(in Chinese)2022,53, 488−496..
Pratt, R. C.; Lohmeijer, B. G. G.; Long, D. A.; Waymouth, R. M.; Hedrick, J. L. Triazabicyclodecene: A simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters.J. Am. Chem. Soc.2006,128, 4556−4557..
Simón L.; Goodman, J. M. The mechanism of TBD-catalyzed ring-opening polymerization of cyclic esters.J. Org. Chem.2007,72, 9656−9662..
Triclosan-conjugated, Lipase-responsive Polymeric Micelles for Eradication of Staphylococcal Biofilms
Preparation of Chemically Recyclable Poly(ether-alt-ester) by the Ring Opening Polymerization of Cyclic Monomers Synthesized by Coupling Glycolide and Epoxides
Related Author
Yan-Qiang Huang
Yuan-Feng Li
Yong Liu
Lin-Qi Shi
Feng Ren
Zhuang-Zhuang Liang
Ming-Xin Niu
Chen-Yang Hu
Related Institution
State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Institute of Polymer Chemistry, College of Chemistry, Nankai University
Wenzhou Institute, University of Chinese Academy of Sciences
Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University
Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences