FOLLOWUS
a.Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
b.University of Chinese Academy of Sciences, Beijing 100081, China
c.Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
bfisvip@163.com (F.B.)
xbding@cioc.ac.cn (X.B.D.)
Published:01 August 2024,
Published Online:05 June 2024,
Received:28 February 2024,
Revised:20 March 2024,
Accepted:13 April 2024
Scan for full text
Li, Y. D.; Li, H.; Feng, L. K.; Bao F.; Wang, M. L.; Zhu, C. Z.; Zheng, Z. H.; Ding, X. B.; Xu, J. Molecular chain flexibility and dielectric loss at high-frequency: impact of ester bond arrangement in poly(ester imide)s. Chinese J. Polym. Sci. 2024, 42, 1122–1133
Ya-Dong Li, Hong Li, Lu-Kun Feng, et al. Molecular Chain Flexibility and Dielectric Loss at High-Frequency: Impact of Ester Bond Arrangement in Poly(ester imide)s. [J]. Chinese Journal of Polymer Science 42(8):1122-1133(2024)
Li, Y. D.; Li, H.; Feng, L. K.; Bao F.; Wang, M. L.; Zhu, C. Z.; Zheng, Z. H.; Ding, X. B.; Xu, J. Molecular chain flexibility and dielectric loss at high-frequency: impact of ester bond arrangement in poly(ester imide)s. Chinese J. Polym. Sci. 2024, 42, 1122–1133 DOI: 10.1007/s10118-024-3140-6.
Ya-Dong Li, Hong Li, Lu-Kun Feng, et al. Molecular Chain Flexibility and Dielectric Loss at High-Frequency: Impact of Ester Bond Arrangement in Poly(ester imide)s. [J]. Chinese Journal of Polymer Science 42(8):1122-1133(2024) DOI: 10.1007/s10118-024-3140-6.
Six poly(ester imide)s with varying molecular chain rigidity were synthesized by altering the arrangement of the ester bond on the aromatic ring while maintaining similar polarizations
with a focus on the correlation between chain morphology and dielectric properties.
The evolution of high-frequency communication has accentuated the significance of controlling dielectric properties in polymer media. Traditionally
it has been theorized that rigid molecular chains lead to lower dielectric loss. However
the validity of this proposition at high frequencies remains uncertain. To scrutinize the correlation between chain flexibility and dielectric properties
we synthesized six poly(ester imide)s (PEIs) with systematically varied molecular chain flexibilities by modifying the ester's substitution on the aromatic ring. The introduction of ester bonds bestowed all PEI films with a low dielectric dissipation factor (
D
f
)
ranging from 0.0021 to 0.0038 at 10 GHz in dry conditions. The dry
D
f
displayed a pattern consistent with volume polarizability (
P
/
V
). Unexpectedly
PI-mmm-T
featuring the most flexible molecular chain
exhibited the lowest dielectric loss under both dry (0.0021 @ 10 GHz) and hygroscopic (0.0029 @ 10 GHz) conditions. Furthermore
the observed increase in
D
f
after humidity absorption suggests that the high dielectric loss of PEI in applications may be attributed to its hygroscopic nature. Molecular simulations and characterization of the aggregation structure revealed that the smaller cavities within flexible molecular chains
after close stacking
impede the entry of water molecules. Despite sacrificing high-temperature resistance
the precursor exhibited enhanced solubility properties and could be processed into high-quality films. Our research unveils new insights into the relationship between flexibility and high-frequency dielectric loss
offering innovative perspectives on synthesizing aromatic polymers with exceptional dielectric properties.
5G communicationsPoly(ester imide)sMolecular chain flexibilityDielectric propertiesHumidity absorption
Fukunaga, K. Dielectric materials at high frequencies.IEEE Transact. Dielectr. Electr. Insulation2006,13, 687−687..
Rappaport, T. S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G. N.; Schulz, J. K.; Samimi, M.; Gutierrez, F. Millimeter wave mobile communications for 5G cellular: it will work!IEEE Access2013,1, 335−349..
Jastrow, C.; Priebe, S.; Spitschan, B.; Hartmann, J.; Jacob, M.; Kürner, T.; Schrader, T.; Kleine-Ostmann, T. Wireless digital data transmission at 300 GHz.Electr. Lett.2010,46, 661−663..
Adeogun, R.; Berardinelli, G.; Mogensen, P. E.; Rodriguez, I.; Razzaghpour, M. Towards 6G in-X subnetworks with sub-millisecond communication cycles and extreme reliability.IEEE Access2020,8, 110172−110188..
Prateek; Thakur, V. K.; Gupta, R. K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects.Chem. Rev.2016,116, 4260−4317..
Wang, L.; Yang, J.; Cheng, W.; Zou, J.; Zhao, D. Progress on polymer composites with low dielectric constant and low dielectric loss for high-frequency signal transmission.Front. Mater.2021,8, 774843..
Wang, J.; Zhou, J.; Jin, K.; Wang, L.; Sun, J.; Fang, Q. A new fluorinated polysiloxane with good optical properties and low dielectric constant at high frequency based on easily available tetraethoxysilane (TEOS).Macromolecules2017,50, 9394−9402..
He, J.-J.; Yang, H.-X.; Zheng, F.; Yang, S. Y. Dielectric properties of fluorinated aromatic polyimide films with rigid polymer backbones.Polymers2022,14, 649..
Zhang, W.; Peng, Z.; Pan, Q.; Liu, S.; Zhao, J. Effect of fluorinated substituents on solubility and dielectric properties of the liquid crystalline poly(ester imides).ACS Appl. Polym. Mater.2023,5, 141−151..
Dong, W.; Guan, Y.; Shang, D. Novel soluble polyimides containing pyridine and fluorinated units: preparation, characterization, and optical and dielectric properties.RSC Adv.2016,6, 21662−21671..
Wang, B.; Shang, Y. R.; Ma, Z.; Pan, L.; Li, Y. S. Non-porous ultra low dielectric constant materials based on novel silicon-containing cycloolefin copolymers with tunable performance.Polymer2017,116, 105−112..
Chen, Y.; Liu, Y.; Min, Y. Synthesis and properties comparison of low dielectric silicon containing polyimides.Materials2022,15, 2755..
Liu, F.; Chen, X.; Fang, L.; Sun, J.; Fang, Q. An effective strategy for the preparation of intrinsic low-kand ultralow-loss dielectric polysiloxanes at high frequency by introducing trifluoromethyl groups into the polymers.Polym. Chem.2020,11, 6163−6170..
Wang, Z. H.; Fang, G. Q.; He, J. J.; Yang, H. X.; Yang, S. Y. Semi-aromatic thermosetting polyimide resins containing alicyclic units for achieving low melt viscosity and low dielectric constant.React. Funct. Polym.2020,146, 104411..
Zhang, H.; Sun, J.; Fang, Q. A low dielectric polymer with high thermostability derived from bio-based isoeugenol.Eur. Polym. J.2022,179, 111527..
Olariu, M. A.; Hamciuc, C.; Asandulesa, M.; Hamciuc, E.; Epure, E.-L.; Tsakiris, V.; Lisa, G. Study on highly thermostable low-kpolymer films based on fluorene-containing polyetherimides.Polym. Eng. Sci.2021,61, 2639−2652..
Tan, W. Y.; Jian, L. F.; Chen, W. P.; Zhang, Y. W.; Lu, X. C.; Huang, W. J.; Zhang, J. S.; Wu, J. W.; Feng, J. L.; Liu, Y. D.; Cui, T. T.; Min, Y. G. A facile strategy for intrinsic low-Dkand low-Dfpolyimides enabled by spirobifluorene groups.Chinese J. Polym. Sci.2023,41, 288−296..
Zhou, J.; Tao, Y.; Chen, X.; Chen, X.; Fang, L.; Wang, Y.; Sun, J.; Fang, Q. Perfluorocyclobutyl-based polymers for functional materials.Mater. Chem. Frontiers2019,3, 1280−1301..
Lu, H.; Li, D.; Zhang, Y.; Wu, Z.; Wang, H.; Liu, S.; Yan, G.; Yang, J.; Zhang, G. Design of low dielectric constant and high transparent polyarylate containing spiral ring.Polymer2021,228, 123948..
Qian, C.; Bei, R.; Zhu, T.; Zheng, W.; Liu, S.; Chi, Z.; Aldred, M. P.; Chen, X.; Zhang, Y.; Xu, J. Facile strategy for intrinsic low-k dielectric polymers: molecular design based on secondary relaxation behavior.Macromolecules2019,52, 4601−4609..
Miranda, D. F.; Zhang, S.; Runt, J. Controlling crystal microstructure to minimize loss in polymer dielectrics.Macromolecules2017,50, 8083−8096..
Han, S.; Li, Y.; Hao, F.; Zhou, H.; Qi, S.; Tian, G.; Wu, D. Ultra-low dielectric constant polyimides: Combined efforts of fluorination and micro-branched crosslink structure.Eur. Polym. J.2021,143, 110206..
Ma, Q.; Wang, H.; Zhan, G.; Liu, X.; Yang, Y.; Zhuang, Q.; Qian, J. Preparing multifunctional high-performance cross-linked polybenzoxazole aerogels from polybenzoxazine.ACS Appl. Polym. Mater.2021,3, 2352−2362..
Ronova, I. A.; Bruma, M.; Schmidt, H. W. Conformational rigidity and dielectric properties of polyimides.Struct. Chem.2012,23, 219−226..
Chen, Y. C.; Lin, Y. C.; Kuo, C. C.; Ueda, M.; Chen, W. C. Investigation of the structure-dielectric relationship of polyimides with ultralow dielectric constant and dissipation factors using density functional theory.Polymer2022,256, 125184..
Kuo, C. C.; Lin, Y. C.; Chen, Y. C.; Wu, P. H.; Ando, S.; Ueda, M.; Chen, W. C. Correlating the molecular structure of polyimides with the dielectric constant and dissipation factor at a high frequency of 10 GHz.ACS Appl. Polym. Mater.2021,3, 362−371..
Hasegawa, M.; Koseki, K. Poly(ester imide)s possessing low coefficient of thermal expansion and low water absorption.High Perform. Polym.2006,18, 697−717..
Hasegawa, M.; Sakamoto, Y.; Tanaka, Y.; Kobayashi, Y. Poly(ester imide)s possessing low coefficients of thermal expansion (CTE) and low water absorption (III). Use of bis(4-aminophenyl)terephthalate and effect of substituents.Eur. Polym. J.2010,46, 1510−1524..
Cheng, Y. C.; Chen, Y. C.; Lin, Y. C.; Kuo, C. C.; Chen, W. C. Exploring the cross-linking effect on decreasing the dielectric constant and dissipation factor of poly(ester imide)s at a high frequency of 10−40 GHz.ACS Appl. Polym. Mater.2023,5, 7907−7917..
García, J. M.; García, F. C.; Serna, F.; De La Peña, J. L. High-performance aromatic polyamides.Prog. Polym. Sci.2010,35, 623−686..
Zhou, S.; Wang, X.; Zhang, W.; Zhang, M.; Zhang, X.; Zhao, N.; Liu, R.; Xu, J.; Shen, Z.; Fan, X. Facile preparation and characterization of soluble aramid.J. Appl. Polym. Sci.2018,135, 4634159..
Ozarslan, O.; Yildiz, E.; Yilmaz, T.; Gungor, A.; Kuyulu, A. Novel poly(arylene ether ketone ketone)s synthesized by Friedel-Crafts acylation.Macromolecular Chem. Phys.1998,199, 1887−1893..
Yang, C.; Hsiao, S.; Lin, Y. Synthesis and properties of polyamides and copolyamides based on 2,6-naphthalene dicarboxylic-acid.J. Appl. Polym. Sci.1994,51, 2063−2072..
Hsiao, S. H.; Leu, W. T. Synthesis and properties of novel aromatic poly(ester amide)s derived from 1,5-bis(4-aminobenzoyloxy)naphthalene and aromatic dicarboxylic acids.Eur. Polym. J.2004,40, 2471−2480..
Hsiao, S. H.; Liou, G. S. Preparation and characterization of aromatic polyamides from 4,4′-(2,6-naphthylenedioxy)dibenzoic acid and aromatic diamines.Macromolecular Chem. Phys.1998,199, 2321−2328..
Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: syntheses, physical properties and applications.Prog. Polym. Sci.2012,37, 907−974..
Ding, M. Isomeric polyimides.Prog. Polym. Sci.2007,32, 623−668..
Lee, J. S.; Yan, Y. Z.; Park, S. S.; Ahn, S. K.; Ha, C. S. A novel diamine containing ester and diphenylethane groups for colorless polyimide with a low dielectric constant and low water absorption.Polymers2022,14, 4504..
Zhang, C.; He, X.; Lu, Q. Polyimide films with ultralow dielectric loss for 5G applications: Influence and mechanism of ester groups in molecular chains.Eur. Polym. J.2023,200, 112544..
Zhang, W.; Peng, Z.; Zhang, X.; Pan, Q.; Liu, S.; Cao, B.; Zhao, J. Soluble liquid crystalline poly(ester imide)s with high glass transition temperatures and improved dielectric properties.ACS Appl. Polym. Mater.2022,4, 4234−4243..
Hasegawa, M.; Tsujimura, Y.; Koseki, K.; Miyazaki, T. Poly(ester imide)s possessing low CTE and low water absorption (II). Effect of substituents.Polym. J.2008,40, 56−67..
Hasegawa, M.; Saito, T.; Tsujimura, Y. Poly(ester imide)s possessing low coefficients of thermal expansion and low water absorption (IV): effects of ester-linked tetracarboxylic dianhydrides with longitudinally extended structures.Polym. Adv. Technol.2020,31, 389−406..
Hasegawa, M.; Hishiki, T. Poly(ester imide)s possessing low coefficients of thermal expansion and low water absorption (V). Effects of ester-linked diamines with different lengths and substituents.Polymers2020,12, 859..
Souza Araujo, A. A.; Bezerra, M. d. S.; Storpirtis, S.; Matos, J. d. R. Determination of the melting temperature, heat of fusion, and purity analysis of different samples of zidovudine (AZT) using DSC.Braz. J. Pharm. Sci.2010,46, 37−43..
Chen, W.; Chen, W.; Zhang, B.; Yang, S.; Liu, C. Y. Thermal imidization process of polyimide film: Interplay between solvent evaporation and imidization.Polymer2017,109, 205−215..
Konieczny, M.; Xu, H.; Battaglia, R.; Wunder, S. L.; Volksen, W. Curing studies of the meta, para and 50/50 mixed isomers of the ethyl ester of 4,4′-oxydianiline/pyromellitic dianhydride polyamicacid.Polymer1997,38, 2969−2979..
Song, N.; Shi, K.; Yu, H.; Yao, H.; Ma, T.; Zhu, S.; Zhang, Y.; Guan, S. Decreasing the dielectric constant and water uptake of co-polyimide films by introducing hydrophobic cross-linked networks.Eur. Polym. J.2018,101, 105−112..
Huang, S.; Zhang, Y.; Lai, X.; Lv, X.; Li, J.; Qiu, S.; Zhang, G.; Sun, R. A comprehensive study on the effect of molecular chain flexibility on the low-temperature curing ability of polyimides.J. Mater. Chem. C2023,12, 177−186..
He, X.; Zhang, S.; Zhou, Y.; Zheng, F.; Lu, Q. The “fluorine impact” on dielectric constant of polyimides: a molecular simulation study.Polymer2022,254, 125073..
Bei, R.; Chen, K.; He, Y.; Li, C.; Chi, Z.; Liu, S.; Xu, J.; Zhang, Y. A systematic study of the relationship between the high-frequency dielectric dissipation factor and water adsorption of polyimide films.J. Mater. Chem. C2023,11, 10274−10281..
Zhang, M.; Liu, W.; Gao, X.; Cui, P.; Zou, T.; Hu, G.; Tao, L.; Zhai, L. Preparation and characterization of semi-alicyclic polyimides containing trifluoromethyl groups for optoelectronic application.Polymers2020,12, 1532..
Vinogradova, S. V.; Vasnev, V. A.; Valetskii, P. M. Polyarylates. Synthesis and properties.Russ. Chem. Rev.1994,63, 833..
0
Views
18
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution