FOLLOWUS
a.Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
b.Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
c.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
d.University of Chinese Academy of Sciences, Beijing 100049, China
pstwmz@ustc.edu.cn (M.Z.W.)
xwge@ustc.edu.cn (X.W.G.)
Published:01 August 2024,
Published Online:23 May 2024,
Received:18 March 2024,
Revised:03 April 2024,
Accepted:10 April 2024
Scan for full text
Ge, Z. Q.; Yan, S.; Pan, Z. X.; Lei, S.; Mao, X. Z.; Zhao, C.; Wang, M. Z.; Ge, X. W. Preparation and structure-property regulation mechanism of reversible thermochromic polydiacetylene. Chinese J. Polym. Sci. 2024, 42, 1111–1121
Zhi-Qing Ge, Shuo Yan, Zu-Xiong Pan, et al. Preparation and Structure-Property Regulation Mechanism of Reversible Thermochromic Polydiacetylene. [J]. Chinese Journal of Polymer Science 42(8):1111-1121(2024)
Ge, Z. Q.; Yan, S.; Pan, Z. X.; Lei, S.; Mao, X. Z.; Zhao, C.; Wang, M. Z.; Ge, X. W. Preparation and structure-property regulation mechanism of reversible thermochromic polydiacetylene. Chinese J. Polym. Sci. 2024, 42, 1111–1121 DOI: 10.1007/s10118-024-3142-4.
Zhi-Qing Ge, Shuo Yan, Zu-Xiong Pan, et al. Preparation and Structure-Property Regulation Mechanism of Reversible Thermochromic Polydiacetylene. [J]. Chinese Journal of Polymer Science 42(8):1111-1121(2024) DOI: 10.1007/s10118-024-3142-4.
New polydiacetylene materials with specific melting behavior and thermochromic properties can be customized by precisely regulating the structure of diacetylene monomers.
The thermochromic mechanism and the structure-property regulation principle of reversible thermochromic polydiacetylene (PDA) materials have always been a challenging issue. In this work
a series of diacetylene monomers (m-PCDA) containing phenyl and amide or carboxyl groups were synthesized from 10
12-pentacosadiynoic acid (PCDA) through the esterification or amidation reactions. The effects of the number and the distribution of the functional groups in m-PCDA molecules on their solid-state polymerization capability
and the thermochromic mechanism of their corresponding polymers (m-PDA) were investigated and discussed in detail. The results show that the m-PCDA monomers containing both benzene ring and groups that can form hydrogen bonding interactions have strong intermolecular interaction
and are easy to carry out the solid phase polymerization under 254-nm UV irradiation to obtain the corresponding new thermochromic m-PDA materials. The thermochromic behavior of m-PDA depends on its melting process. The initial color-change temperature (blue to red) is determined by the onset melting temperature
and the temperature range in which reversible color recovery can be achieved by repeat heating-cooling treatment is determined by its melting range. According to the proposed thermochromic mechanism of PDA
various new PDA materials with precise thermochromic temperatures and reversible thermochromic temperature ranges can be designed and synthesized through the appropriate introduction of benzene ring and groups that can form hydrogen bonding interactions into the molecular structure of linear diacetylene monomer. This work provides a perspective to the precise molecular structure design and the property regulation of the reversible thermochromic PDA materials.
PolydiacetyleneThermochromismHydrogen bondingChemical modification
Lee, J.; Lee, C.W.; Kim, J. M. A magnetically responsive polydiacetylene precursor for latent fingerprint analysis.ACS Appl. Mater. Interfaces2016,8, 6245−6251..
Chance, R. R.; Patel, G. N.; Turi, E. A. Energetics of the thermal polymerization of a diacetylene crystal.J. Am. Chem. Soc.1978,100, 1307−1309..
Wen, J. T.; Roper, J. M.; Tsutsui, H. Polydiacetylene supramolecules: synthesis, characterization, and emerging applications.Ind. Eng. Chem. Res.2018,57, 9037−9053..
Yu, X. W.; Luo, Y. H.; Wu, W. X.; Yan, Q.; Zou, G.; Zhang, Q. J. Synthesis and reversible thermochromism of azobenzene containing polydiacetylenes.Eur. Polym. J.2008,44, 3015−3021..
Park, I. S.; Park, H. J.; Jeong, W.; Nam, J.; Kang, Y.; Shin, K.; Chung, H.; Kim, J. M. Low temperature thermochromic polydiacetylenes: design, colorimetric properties, and nanofiber formation.Macromolecules2016,49, 1270−1278..
Peng, H. S.; Sun, X. M.; Cai, F. J.; Chen, X. L.; Zhu, Y. C.; Liao, G. P.; Chen, D. Y.; Li, Q. W.; Lu, Y. F.; Zhu, Y. T.; Jia, Q. X. Electrochromatic carbon nanotube/polydiacetylene nano- composite fibres.Nat. Nanotechnol.2009,4, 738−741..
Das, B.; Jo, S.; Zheng, J. L.; Chen, J. L.; Sugihara, K. Recent progress in polydiacetylene mechanochromism.Nanoscale2020,14, 1670−1678..
Wang, T.; Guo, Y. L.; Wan, P. B.; Sun, X. M.; Zhang, H.; Yu, Z. Z.; Chen, X. D. A flexible transparent colorimetric wrist strap sensor.Nanoscale2017,9, 869−874..
Tu, M. C.; Cheema, J. A.; Yildiz, U. H.; Palaniappan, A.; Liedberg, B. Vapor phase solvatochromic responses of polydiacetylene embedded matrix polymers.J. Mater. Chem. C2017,5, 1803−1809..
Lee, J.; Chang, H. T.; An, H.; Ahn, S.; Shim, J.; Kim, J. M. A protective layer approach to solvatochromic sensors.Nat. Commun.2013,4, 2461..
Chanakul, A.; Traiphol, N.; Faisadcha, K.; Traiphol, R. Dual colorimetric response of polydiacetylene/zinc oxide nanocomposites to low and high pH.J. Colloid Interface Sci.2014,418, 43−51..
Takeuchi, M.; Kawashima, H.; Imai, H.; Fujii, S.; Oaki, Y. Quantitative detection of near-infrared (NIR) light using organic layered composites.J. Mater. Chem. C2019,7, 4089−4095..
Lee, J.; Seo, S.; Kim, J. Rapid light driven color transition of novel photoresponsive polydiacetylene molecules.ACS Appl. Mater. Interfaces2018,10, 3164−3169..
Chen, X. L.; Li, L.; Sun, X. M.; Liu, Y. P.; Luo, B.; Wang, C. C.; Bao, Y. P.; Xu, H.; Peng, H. S. Magnetochromatic polydiacetylene by incorporation of Fe3O4nanoparticles.Angew. Chem. Int. Ed.2011,50, 5486−5489..
Li, Y.; Wang, L.; Yin, X.; Ding, B.; Sun, G.; Ke, T.; Chen, J.; Yu, J. Colorimetric strips for visual lead ion recognition utilizing polydiacetylene embedded nanofibers.J. Mater. Chem. A2014,2, 18304−18312..
Gwon, Y. J.; Kim, C.; Lee, T. S. Chromatic detection of Cs ions using polydiacetylene-based vesicles containing crown ether like ethylene glycol units.Sens. Actuators B2019,281, 343−349..
Nguyen, L. H.; Naficy, S.; McConchie, R.; Dehghani, F.; Chandrawati, R. Polydiacetylene based sensors to detect food spoilage at low temperatures.J. Mater. Chem. C2019,7, 1919−1926..
Li, S.; Zhang, L.; Jiang, J.; Meng, Y.; Liu, M. H. Self-assembled polydiacetylene vesicle and helix with chiral interface for visualized enantioselective recognition of sulfinamide.ACS Appl. Mater. Interfaces2017,9, 37386−37394..
Wu, J.; Zawistowski, A.; Ehrmann, M.; Yi, T.; Schmuck, C. Peptide functionalized polydiacetylene liposomes act as a fluorescent turn-on sensor for bacterial lipopolysaccharide.J. Am. Chem. Soc.2011,133, 9720−9723..
Wang, Y.; Pei, H.; Jia, Y.; Liu, J.; Li, Z.; Ai, K.; Lu, Z.; Lu, L. Synergistic tailoring of electrostatic and hydrophobic interactions for rapid and specific recognition of lysophosphatidic acid, an early-stage ovarian cancer biomarker.J. Am. Chem. Soc.2017,139, 11616−11621..
Yu, L.; Hsu, S. L. A spectroscopic analysis of the role of side chains in controlling thermochromic transitions in polydiacetylenes.Macromolecules2011,45, 420−429..
Huo, J. P.; Hu, Z. D.; He, G. Z.; Hong, X. X.; Yang, Z. H.; Luo, S. H.; Ye, X. F.; Li, Y. L.; Zhang, Y. B.; Zhang, M.; Chen, H.; Fan, T.; Zhang, Y. Y.; Xiong, B. Y.; Wang, Z. Y.; Zhu, Z. B.; Chen, D. C. High temperature thermochromic polydiacetylenes: design and colorimetric properties.Appl. Surf. Sci.2017,423, 951−956..
Traiphol, N.; Faisadcha, K.; Potai, R.; Traiphol, R. Fine tuning the color-transition temperature of thermoreversible polydiacetylene/zinc oxide nanocomposites: the effect of photopolymerization time.J. Colloid Interf. Sci.2015,439, 105−111..
Dong, W. J.; Lin, G. H.; Wang, H. F.; Lu, W. S. New dendritic polydiacetylene sensor with good reversible thermochromic ability in aqueous solution and solid film.ACS Appl. Mater. Interfaces2017,9, 11918−11923..
Kim, J. M.; Lee, J. S.; Choi, H.; Sohn, D.; Ahn, D. J. Rational design andin situFTIR analyses of colorimetrically reversibe polydiacetylene supramolecules.Macromolecules2005,38, 9366−9376..
Lee, S.; Kim, J. M.α-Cyclodextrin: a molecule for testing colorimetric reversibility of polydiacetylene supramolecules.Macromolecules2007,40, 9201−9204..
Tanioku, C.; Matsukawa, K.; Matsumoto, A. Thermochromism and structural change in polydiacetylenes including carboxy and 4-carboxyphenyl groups as the intermolecular hydrogen bond linkages in the side chain.ACS Appl. Mater. Interfaces2013,5, 940−948..
Zhang, L.; Yuan, Y. Z.; Tian, X. H.; Sun, J. Y. A thermally reversible supramolecular system based on biphenyl polydiacetylene.Chin. Chem. Lett.2015,26, 1133−1136..
Khanantong, C.; Charoenthai, N.; Kielar, F.; Traiphol, N.; Traiphol, R. Influences of bulky aromatic head group on morphology, structure and color-transition behaviors of polydiacetylene assemblies upon exposure to thermal and chemical stimuli.Colloid Surface A2019,561, 226−235..
Beliktay, G.; Shaikh, T.; Koca, E.; Cingil, H. E. Effect of UV irradiation time and headgroup interactions on the reversible colorimetric pH response of polydiacetylene assemblies.ACS Omega2023,8, 37213−37224..
Ahn, D. J.; Chae, E. H.; Lee, G. S.; Shim, H. Y.; Chang, T. E.; Ahn, K. D.; Kim, J. M. Colorimetric reversibility of polydiacetylene supramolecules having enhanced hydrogen bonding under thermal and pH stimuli.J. Am. Chem. Soc.2003,125, 8976−8977..
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2019 .
Exarhos, G. J.; Risen, W. M.; Baughman, R. H. Resonance raman study of the thermochromic phase transition of a polydiacetylene.J. Am. Chem. Soc.1976,98, 481−487..
Baughman, R. H. Solid state synthesis of large polymer single crystals.J. Polym. Sci., Part B: Polym. Phys.1974,12, 1511−1535..
Hall, A. V.; Yufit, D. S.; Apperley, D. C.; Senak, L.; Musa, O. M.; Hood, D. K.; Steed, J. W. The crystal engineering of radiation-sensitive diacetylene cocrystals and salts.Chem. Sci.2020,11, 8025−8035..
Carpick, R. W.; Sasaki, D. Y.; Marcus, M. S.; Eriksson, M. A.; Burns, A. R. Polydiacetylene films: a review of recent investigations into chromogenic transitions and nanomechanical properties.J. Phys. Condens. Matter2004,16, 679−697..
Das, B.; Jo, S.; Zheng, J. L.; Chen, J. L.; Sugihara, K. Recent progress in polydiacetylene mechanochromism.Nanoscale2022,14, 1670−1678..
Hoofman, R.; Gelinck, G. H.; Siebbeles, L.; Haas, M. P.; Warman, J. M.; Bloor, D. Influence of backbone conformation on the photoconductivity of polydiacetylene chains.Macromolecules2009,33, 9289−9297..
0
Views
46
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution