FOLLOWUS
a.State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Liaoning Technology Innovation Center of High Performance Resin Materials, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian 116024, China
b.Thermochemistry Laboratory, Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
kouyan@dicp.ac.cn (Y.K.)
zweng@dlut.edu.cn (Z.H.W.)
Published:01 August 2024,
Published Online:26 June 2024,
Received:14 March 2024,
Revised:14 April 2024,
Accepted:24 April 2024
Scan for full text
Lu, Q. Y.; Gu, H. W.; Li, J. H.; Fan, Q. Q.; Liu, B. T.; Kou, Y.; Jian, X. G.; Weng, Z. H. Unleashing the power of bio-based thermotropic liquid crystal modifiers: toughening and reinforcing petroleum-based epoxy resin without compromising other properties. Chinese J. Polym. Sci. 2024, 42, 1093–1102
Qing-Yun Lu, Hong-Wei Gu, Jia-Hui Li, et al. Unleashing the Power of Bio-based Thermotropic Liquid Crystal Modifiers: Toughening and Reinforcing Petroleum-based Epoxy Resin without Compromising Other Properties. [J]. Chinese Journal of Polymer Science 42(8):1093-1102(2024)
Lu, Q. Y.; Gu, H. W.; Li, J. H.; Fan, Q. Q.; Liu, B. T.; Kou, Y.; Jian, X. G.; Weng, Z. H. Unleashing the power of bio-based thermotropic liquid crystal modifiers: toughening and reinforcing petroleum-based epoxy resin without compromising other properties. Chinese J. Polym. Sci. 2024, 42, 1093–1102 DOI: 10.1007/s10118-024-3149-x.
Qing-Yun Lu, Hong-Wei Gu, Jia-Hui Li, et al. Unleashing the Power of Bio-based Thermotropic Liquid Crystal Modifiers: Toughening and Reinforcing Petroleum-based Epoxy Resin without Compromising Other Properties. [J]. Chinese Journal of Polymer Science 42(8):1093-1102(2024) DOI: 10.1007/s10118-024-3149-x.
A bio-based thermotropic liquid crystal epoxy resin (THMT-EP) was used to modify petroleum-based epoxy resin (E51)
which significantly improved the impact strength of the blended system
as well as the thermal stability
mechanical strength
and flame retardant properties. It addressed the dilemma of sacrificing other properties for toughened epoxy resin.
Toughening the petroleum-based epoxy resin blends with bio-based modifiers without compromising their modulus
mechanical strength
and other properties is still a big challenge in view of the sustainability. In this study
a bio-based liquid crystal epoxy resin (THMT-EP) with an
s
-triazine ring structure was utilized to modify a petroleum-based bisphenol A epoxy resin (E51) with 4
4'-diaminodiphenylsulfone (DDS) as a curing agent
and the blended systems were evaluated for their thermal stability
mechanical properties
and flame retardancy. The results showed that the impact strength of the blended system initially increased and then decreased with the increase in THMT-EP content
and it reached the a maximum value of 26.5 kJ/m
2
when the THMT-EP content was 5%
which was 31.2% higher than that of E51/DDS. Notably
the flexural strength
modulus
and glass transition temp
erature of the blended system were all simultaneously improved with the addition of THMT-EP. At the same time
the addition of THMT-EP enhanced the flame retardancy of the system by increasing the char yield at 700 °C and decreasing the peak heat release rate and total heat release rate. This work paves the way for a more sustainable improvement in the comprehensive performance of epoxy resin.
Epoxy resinTougheningBio-basedThermotropic liquid crystal
Yang, X.; Wang, C. P.; Xia, J. L.; Mao, W.; Li, S. H. Study on synthesis of novel phosphorus-containing flame retardant epoxy curing agents from renewable resources and the comprehensive properties of their combined cured products.Prog. Org. Coat.2017,110, 195−203..
Chen, B.; Wu, Q.; Li, J.; Lin, K. D.; Chen, D. C.; Zhou, C. L.; Wu, T.; Luo, X. H.; Liu, Y. L. A novel and green method to synthesize a epoxidized biomass eucommia gum as the nanofiller in the epoxy composite coating with excellent anticorrosive performance.Chem. Eng. J.2020,379, 122323−122335..
Qin, B.; Zhang, S.; Sun, P.; Tang, B. H.; Yin, Z.; Cao, X.; Chen, Q.; Xu, J. F.; Zhang, X. Tough and multi-recyclable cross-linked supramolecular polyureasviaincorporating noncovalent bonds into main-chains.Adv. Mater.2020,32, 2000096−2000102..
Abu Bakar, R.; Hepburn, K. S.; Keddie, J. L.; Roth, P. J. Degradable, ultraviolet-crosslinked pressure-sensitive adhesives made from thioester-functional acrylate copolymers.Angew. Chem. Int. Ed.2023,62, e202307009..
Zhong, L. Y.; Hao, Y. X.; Zhang, J. H.; Wei, F.; Li, T. C.; Miao, M. H.; Zhang, D. H. Closed-loop recyclable fully bio-based epoxy vitrimers from ferulic acid-derived hyperbranched epoxy resin.Macromolecules2022,55, 595−607..
Huo, S. Q.; Sai, T.; Ran, S. Y.; Guo, Z. H.; Fang, Z. P.; Song, P. A.; Wang, H. A hyperbranched P/N/B-containing oligomer as multifunctional flame retardant for epoxy resins.Compos. Part B-Eng.2022,234, 109701−109712..
Wang, H. G.; Lu, R. J.; Yan, J.; Peng, J. S.; Tomsia, A. P.; Liang, R.; Sun, G. X.; Liu, M. J.; Jiang, L.; Cheng, Q. F. Tough and conductive nacre-inspired MXene/epoxy layered bulk nanocomposites.Angew. Chem. Int. Ed. 2022 ,62, e202216874..
Wu, Y. M.; Ye, K.; Liu, Z. D.; Wang, B.; Yan, C.; Wang, Z. W.; Lin, C. T.; Jiang, N.; Yu, J. H. Cotton candy-templated fabrication of three-dimensional ceramic pathway within polymer composite for enhanced thermal conductivity.ACS Appl. Mater. Interfaces2019,11, 44700−44707..
Li, J.; Zhang, Z.; Zhang, Y.; Sun, F.; Wang, D.; Wang, H.; Jin, Z. Synergistic effect of lignin and ethylene glycol crosslinked epoxy resin on enhancing thermal, mechanical and shape memory performance.Int. J. Biol. Macromol.2021,192, 516−524..
Zhang, A. L.; Zhang, J. Z.; Liu, L.; Dai, J. F.; Lu, X. Y.; Huo, S. Q.; Hong, M.; Liu, X. H.; Lynch, M.; Zeng, X. S.; Burey, P.; Song, P. G. Engineering phosphorus-containing lignin for epoxy biocomposites with enhanced thermal stability, fire retardancy and mechanical properties.J. Mater. Sci. Technol.2023,167, 82−93..
Peng, W.; Xu, Y. X.; Nie, S. B.; Yang, W. A bio-based phosphaphenanthrene-containing derivative modified epoxy thermosets with good flame retardancy, high mechanical properties and transparency.RSC Adv.2021,11, 30943−30954..
Gao, T. Y.; Wang, F. D.; Xu, Y.; Wei, C. X.; Zhu, S. E.; Yang, W.; Lu, H. D. Luteolin-based epoxy resin with exceptional heat resistance, mechanical and flame retardant properties.Chem. Eng. J.2022,428, 131173−131184..
Li, J.; Aung, H. H.; Du, B. Curing regime-modulating insulation performance of anhydride-cured epoxy resin: a review.Molecules2023,28, 547−559..
Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J. P. Biobased thermosetting epoxy: present and future.Chem. Rev.2013,114, 1082−1115..
Kou, Y. J.; Zhou, W. Y.; Li, B.; Dong, L.; Duan, Y. E.; Hou, Q. W.; Liu, X. R.; Cai, H. W.; Chen, Q. G.; Dang, Z. M. Enhanced mechanical and dielectric properties of an epoxy resin modified with hydroxyl-terminated polybutadiene.Compos. Part A-Appl. S.2018,114, 97−106..
Domun, N.; Hadavinia, H.; Zhang, T.; Sainsbury, T.; Liaghat, G. H.; Vahid, S. Improving the fracture toughness and the strength of epoxy using nanomaterials--a review of the current status.Nanoscale 2015, 7, 10294−10329..
Pruksawan, S.; Samitsu, S.; Fujii, Y.; Torikai, N.; Naito, M. Toughening effect of rodlike cellulose nanocrystals in epoxy adhesive.ACS Appl. Polym. Mater.2020,2, 1234−1243..
Su, C.; Wang, X.; Ding, L. N.; Wu, Z. S. Enhancement of mechanical behavior of FRP composites modified by silica nanoparticles.Constr. Build. Mater.2020,262, 120769−120781..
Liu, X. F.; Luo, X.; Liu, B. W.; Zhong, H. Y.; Guo, D. M.; Yang, R.; Chen, L.; Wang, Y. Z. Toughening epoxy resin using a liquid crystalline elastomer for versatile application.ACS Appl. Polym. Mater.2019,1, 2291−2301..
Xiao, L. H.; Liu, Z. S.; Li, N.; Li, S.; Fu, P.; Wang, Y. G.; Huang, J. R.; Chen, J.; Nie, X. A. A hyperbranched polymer from tung oil for the modification of epoxy thermoset with simultaneous improvement in toughness and strength.New J. Chem.2020,44, 16856−16863..
Xu, P. J.; Du, X. M.; Cong, P. L.; Zhou, Z. J. Properties of paving epoxy asphalt with epoxy-terminated hyperbranched polyester.Road Mater. Pavement Des.2020,23, 234−246..
Teng, N.; Dai, J. Y.; Wang, S. P.; Hu, J. Y.; Liu, X. Q. Hyperbranched flame retardant for epoxy resin modification: Simultaneously improved flame retardancy, toughness and strength as well as glass transition temperature.Chem. Eng. J.2022,428, 131226−311236..
Ahmadloo, E.; Gharehaghaji, A. A.; Latifi, M.; Mohammadi, N.; Saghafi, H. How fracture toughness of epoxy-based nanocomposite is affected by PA66 electrospun nanofiber yarn.Eng. Fract. Mech.2017,182, 62−73..
Gul, S.; Kausar, A.; Mehmood, M.; Muhammad, B.; Jabeen, S. Progress on epoxy/polyamide and inorganic nanofiller-based hybrids: introduction, application, and future potential.Polym. Plast. Technol.2016,55, 1842−1862..
Inamdar, A.; Cherukattu, J.; Anand, A.; Kandasubramanian, B. Thermoplastic-toughened high-temperature cyanate esters and their application in advanced composites.Ind. Eng. Chem. Res.2018,57, 4479−4504..
Mi, X. Q.; Liang, N.; Xu, H. F.; Wu, J.; Jiang, Y.; Nie, B.; Zhang, D. H. Toughness and its mechanisms in epoxy resins.Prog. Mater. Sci.2022,130, 100977−101020..
Ortiz, C.; Kim, R.; Rodighiero, E.; Ober, C. K.; Kramer, E. J. Deformation of a polydomain, liquid crystalline epoxy-based thermoset.Macromolecules1998,31, 4074−4088..
Chen, F.; Cong, Y. H.; Zhang, B. Y. Synthesis and characterization of liquid crystalline epoxy and co-polymerisation with a non-mesomorphic epoxy resin.Liq. Cryst.2016,43, 1100−1109..
Yeo, H. Curing kinetics of liquid crystalline 4,4′-diglycidyloxybiphenyl epoxy with various diamines.Polymer2019,168, 209−217..
Liu, Z.; Yuan, L.; Liang, G. Z.; Gu, A. J. Tough epoxy/cyanate ester resins with improved thermal stability, lower dielectric constant and loss based on unique hyperbranched polysiloxane liquid crystalline.Polym. Adv. Technol.2015,26, 1608−1618..
Hu, B.; Cong, Y. H.; Zhang, B. Y.; Zhang, L.; Shen, Y.; Huang, H. Z. Enhancement of thermal and mechanical performances of epoxy nanocomposite materials based on graphene oxide grafted by liquid crystalline monomer with Schiff base.J. Mater. Sci.2019,55, 3712−3727..
Qi, Y.; Weng, Z. H.; Kou, Y.; Song, L. Q.; Li, J. H.; Wang, J. Y.; Zhang, S. H.; Liu, C.; Jian, X. G. Synthesize and introduce bio-based aromatics-triazine in epoxy resin: Enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers.Chem. Eng. J.2021,406, 126881−126892..
Guo, H. L.; Lu, M. G.; Liang, L. Y.; Zheng, J.; Zhang, Y. F.; Li, Y. W.; Li, Z. X.; Yang, C. H. Enhancement in the thermal and dynamic mechanical properties of high performance liquid crystalline epoxy composites through uniaxial orientation of mesogenic on carbon fiber.J. Appl. Polym. Sci.2014,131, 40363−40371..
Harada, M.; Hamaura, N.; Ochi, M.; Agari, Y. Thermal conductivity of liquid crystalline epoxy/BN filler composites having ordered network structure.Compos. Part B-Eng.2013,55, 306−313..
Yang, X. T.; Zhong, X.; Zhang, J. L.; Gu, J. W. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance.J. Mater. Sci. Technol.2021,68, 209−215..
Ligon-Auer, S. C.; Schwentenwein, M.; Gorsche, C.; Stampfl, J.; Liska, R. Toughening of photo-curable polymer networks: a review.Polym. Chem.2016,7, 257−286..
Fu, Z. L.; Sun, Y. S. Epoxy resin toughened by thermoplastics.Chinese J. Polym. Sci.1989,29, 367−378..
Wei, C.; Tan, S. T.; Wang, X. Y.; Zhang, M. Q.; Zeng, H. M. Effects of liquid crystalline polyurethane on the structure and properties of epoxy.J. Mater. Sci. Lett.2002,21, 719−722..
Yu, G. P.; Liu, C.; Zhou, H. X.; Wang, J. Y.; Lin, E. C.; Jian, X. G. Synthesis and characterization of soluble copoly(arylene ether sulfone phenyl-s-triazine)s containing phthalazinone moieties in the main chain.Polymer2009,50, 4520−4528..
Zivkovic, Z. D.; Dobovisek, B. Determination of reaction-kinetics based on a part of a differential thermal-analysis or thermogravimetric curve.Thermochim. Acta1979,32, 205−211..
Kissinger, H. F. Reaction kinetics in differential thermal analysis.Anal. Chem.1957,29, 1702−1706..
Miao, J. T.; Yuan, L.; Guan, Q. B.; Liang, G. Z.; Gu, A. J. Biobased heat resistant epoxy resin with extremely high biomass content from 2,5-furandicarboxylic acid and eugenol.ACS Sustainable Chem. Eng.2017,5, 7003−7011..
Qi, Y.; Weng, Z. H.; Zhang, K. W.; Wang, J. Y.; Zhang, S. H.; Liu, C.; Jian, X. G. Magnolol-based bio-epoxy resin with acceptable glass transition temperature, processability and flame retardancy.Chem. Eng. J.2020,387, 124115−124128..
0
Views
14
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution