FOLLOWUS
a.Tianjin Key Lab Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
b.Key Lab Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
xiaocs@ciac.ac.cn (C.S.X.)
ysli@tju.edu.cn (Y.S.L.)
Published:01 August 2024,
Published Online:26 June 2024,
Received:21 March 2024,
Revised:21 April 2024,
Accepted:22 April 2024
Scan for full text
Wu, J. J.; Wang, F.; Wan, P. Q.; Pan, L.; Xiao, C. S.; Ma, Z.; Li, Y. S. Synthesis, characterization of polyethylene ionomers and their antibacterial properties. Chinese J. Polym. Sci. 2024, 42, 1077–1084
Jia-Jia Wu, Fei Wang, Peng-Qi Wan, et al. Synthesis, Characterization of Polyethylene Ionomers and Their Antibacterial Properties. [J]. Chinese Journal of Polymer Science 42(8):1077-1084(2024)
Wu, J. J.; Wang, F.; Wan, P. Q.; Pan, L.; Xiao, C. S.; Ma, Z.; Li, Y. S. Synthesis, characterization of polyethylene ionomers and their antibacterial properties. Chinese J. Polym. Sci. 2024, 42, 1077–1084 DOI: 10.1007/s10118-024-3150-4.
Jia-Jia Wu, Fei Wang, Peng-Qi Wan, et al. Synthesis, Characterization of Polyethylene Ionomers and Their Antibacterial Properties. [J]. Chinese Journal of Polymer Science 42(8):1077-1084(2024) DOI: 10.1007/s10118-024-3150-4.
With the rac-Et(Ind)
2
ZrCl
2
catalyst
the efficient copolymerization of ethylene and 11-iodo-undecene was achieved
and the obtai
ned copolymers were used as intermediates to prepare a series of polyethylene ionomers with different counterions. The resultant ionomers could be adjusted in terms of the stress-at-break (7.8−25.6 MPa) and the elongation-at-break (445−847%). Significantly
excellent antibacterial activities (
>
99%) was demonstrated.
Owing to its high production volume and wide range of applications
polyethylene has gained a great deal of attention
but its low surface energy and non-polar nature have limited its application in some important fields. In this study
ethylene/11-iodo-1-undecene copolymers were prepared and used as the intermediates to afford a series of imidazolium-based ionomers bearing methanesulfonate (CH
3
SO
3
−
)
trifluoromethanesulfonate (CF
3
SO
3
−
)
or
bis
(trifluoromethane)sulfonimide (Tf
2
N
−
) counteranions. The tensile test results showed that the stress-at-break (7.8−25.6 MPa) and the elongation-at-break (445%−847%) of the ionomers could be adjusted by changing the counterion species and the ionic group contents. Most importantly
the ionomers exhibited marvelous antibacterial activities against
Staphylococcus aureus
(
S. aureus
) and
Escherichia coli
(
E. coli
). The ionomers bearing Tf
2
N
−
exhibited antibacterial activities
>
99% against both
S. aureus
and
E. coli
when ionic content reached 9.1%. The imidazolium-based ionomers prepared in this work demonstrated excellent comprehensive properties
especially high-efficient and broad-spectrum antibacterial ability
exhibiting the potential for the application as the antibacterial materials in packaging
medical
and other fields.
PolyethyleneIonomerPolymerization catalysisImidazoliumAntibacterial material
Qiao, J. L.; Guo, M. F.; Wang, L. S.; Liu, D. B.; Zhang, X. F.; Yu, L. Q.; Song, W. B.; Liu, Y. Q. Recent advances in polyolefin technology.Polym. Chem.2011,2, 1611−1623..
Jubinville, D.; Esmizadeh, E.; Saikrishnan, S.; Tzoganakis, C.; Mekonnen, T. A comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications.Sustain. Mater. Technol.2020,25, e00188..
Chen, E. Y. X. Coordination polymerization of polar vinyl monomers by single-site metal catalysts.Chem. Rev.2009,109, 5157−5214..
Ittel, S. D.; Johnson, L. K.; Brookhart, M. Late-metal catalysts for ethylene homo- and copolymerization.Chem. Rev.2000,100, 1169−1204..
Wang, F.; Pan, L.; Tuskaev, V. A.; Gagieva, S. C.; Li, Y. S. Phosphine/benzocyclone-based neutral nickel catalysts for ethylene polymerization and copolymerization with polar monomers.Chinese J. Polym. Sci. 2024 ,42, 202−212..
Wang, W. B.; Zou, C.; Chen, C. L. Synthesis of pyrene based α-diimide nickel catalysts for ethylene polymerization/ copolymerization.Acta Polymerica Sinica(in Chinese) 2023 ,54, 1697–1707..
Wang, H. B.; Yang, Y.; Nishiura, M.; Higaki, Y.; Takahara, A.; Hou, Z. M., Synthesis of self-healing polymers by scandium-catalyzed copolymerization of ethylene and anisylpropylenes.J. Am. Chem. Soc. 2019 ,141, 3249–3257..
Dai, S. Y.; Chen, C. L., Direct synthesis of functionalized high-molecular-weight polyethylene by copolymerization of ethylene with polar monomers.Angew. Chem. Int. Ed. 2016 ,55, 13281–13285..
Soshnikov, I. E.; Chen, C. L.; Bryliakov, K. P. Ni catalyzed ethylene copolymerization with polar monomers.Sci. China: Chem.2019,62, 653−654..
Eisenberg, A.; Kim, J. S.; Ratner, M. Introduction to ionomers.Phys. Today1999,52, 68..
Lin, H.; Ramos, L.; Hwang, J.; Zhu, T.; Hossain, M. W.; Wang, Q.; Garashchuk, S.; Tang, C. Main-chain cobaltocenium-containing ionomers for alkaline anion-exchange membranes.Macromolecules2023,56, 6375−6384..
D'Auria, S.; Pourrahimi, A. M.; Favero, A.; Neuteboom, P.; Xu, X.; Haraguchi, S.; Bek, M.; Kádár, R.; Dalcanale, E.; Pinalli, R.; Müller, C.; Vachon, J. Polyethylene based ionomers as high voltage insulation materials.Adv. Funct. Mater.2023,33, 2301878..
Chen, N. J.; Lee, Y. M. Anion exchange polyelectrolytes for membranes and ionomers.Prog. Polym. Sci.2021,113, 101345..
Zou, C.; Zhang, H.; Tan, C.; Cai, Z. G. Polyolefins with intrinsic antimicrobial properties.Macromolecules2021,54, 64−70..
Qin, L. D.; Wang, X. Y.; Mahmood, Q.; Yu, Z. X.; Wang, Y. Z.; Zou, S.; Liang, T. L.; Sun, W. H. High-performanceα-diimine nickel complexes for facile access of PE elastomers with exceptional material properties.Chinese J. Polym. Sci.2024,42, 620−635..
Chen, Z.; Li, J. F.; Tao, W. J.; Sun, X. L.; Yang, X. H.; Tang, Y. Copolymerization of ethylene with functionalized olefins by [ONX]titanium complexes.Macromolecules2013,46, 2870−2875..
Rodriguez, B. A.; Delferro, M.; Marks, T. J. Bimetallic effects for enhanced polar comonomer enchainment selectivity in catalytic ethylene polymerization.J. Am. Chem. Soc.2009,131, 5902−5919..
Berkefeld, A.; Mecking, S. Coordination copolymerization of polar vinyl monomers H2C=CHX.Angew. Chem. Int. Ed.2008,47, 2538−2542..
Xiang, P.; Ye, Z. B. Hyperbranched polyethylene ionomers containing cationic tetralkylammonium ions synthesized by pd–diimine-catalyzed direct ethylene copolymerization with ionic liquid comonomers.Macromolecules2015,48, 6096−6107..
Kostalik, H. A.; Clark, T. J.; Robertson, N. J.; Mutolo, P. F.; Longo, J. M.; Abruña, H. D.; Coates, G. W. Solvent processable tetraalkylammonium-functionalized polyethylene for use as an alkaline anion exchange membrane.Macromolecules2010,43, 7147−7150..
Wang, X. Y.; Wang, Y. X.; Li, Y. S.; Pan, L. Convenient syntheses and versatile functionalizations of isotactic polypropylene containing plentiful pendant styrene groups with high efficiency.Macromolecules2015,48, 1991−1998..
Lin, W. T.; Shao, Z.; Dong, J. Y.; Chung, T. C. M. Cross-linked polypropylene prepared by PP copolymers containing flexible styrene groups.Macromolecules2009,42, 3750−3754..
Dong, J. Y.; Hu, Y. L. Design and synthesis of structurally well-defined functional polyolefinsviatransition metal-mediated olefin polymerization chemistry.Coord. Chem. Rev.2006,250, 47−65..
Aitken, B. S.; Buitrago, C. F.; Heffley, J. D.; Lee, M.; Gibson, H. W.; Winey, K. I.; Wagener, K. B. Precision ionomers: synthesis and thermal/mechanical characterization.Macromolecules2012,45, 681−687..
Zhang, M.; Kim, H. K.; Chalkova, E.; Mark, F.; Lvov, S. N.; Chung, T. C. M. New polyethylene based anion exchange membranes (PE-AEMs) with high ionic conductivity.Macromolecules2011,44, 5937−5946..
Jiang, Y.; Zhang, Z.; Jiang, H. Q.; Wang, Q. Y.; Li, S. H.; Cui, D. M. Polar group-promoted copolymerization of ethylene with polar olefins.Macromolecules2023,56, 1547−1553..
Paxton, N. C.; Allenby, M. C.; Lewis, P. M.; Woodruff, M. A. Biomedical applications of polyethylene.Eur. Polym. J.2019,118, 412−428..
Jenke, D. R. Extractables and leachables considerations for prefilled syringes.Expert. Opin. Drug. Del.2014,11, 1591−1600..
Bauer, S.; Schmuki, P.; von der Mark, K.; Park, J. Engineering biocompatible implant surfaces.Prog. Mater. Sci.2013,58, 261−326..
Brynda, E.; Houska, M.; Novikova, S. P.; Dobrova, N. B. Polyethylene/hydrophilic polymer blends for biomedical applications.Biomaterials1987,8, 57−60..
Chen, M. X.; Dai, J. Y.; Zhang, L. Y.; Wang, S. P.; Liu, J. K.; Wu, Y. G.; Ba, X. W.; Liu, X. Q. The role of renewable protocatechol acid in epoxy coating modification: significantly improved antibacterial and adhesive properties.Chinese J. Polym. Sci.2024,42, 63−72..
Appendini, P.; Hotchkiss, J. H. Review of antimicrobial food packaging.Innov. Food Sci. Emerg.2002,3, 113−126..
Qin, L.; Sharique, M.; Tambar, U. K. Controllable, sequential, and stereoselective C–H allylic alkylation of alkenes.J. Am. Chem. Soc.2019,141, 17305−17313..
Zhang, Y.; Guo, J. J.; Zhang, K. Y.; Ma, X. T.; Cao, D. F.; Bai, S.; Yuan, X. Y.; Pan, L.; Sun, J.; Li, Y. S. Robust ionic cyclic olefin polymers with excellent transparency, barrier properties, and antibacterial properties.Macromolecules2023,56, 4371−4385..
Wang, X. Y.; Long, Y. Y.; Wang, Y. X.; Li, Y. S. Insights into propylene/ω-halo-α-alkenes copolymerization promoted byrac-Et(Ind)2ZrCl2and (pyridyl-amido)hafnium catalysts.J. Polym. Sci., Part A: Polym. Chem.2014,52, 3421−3428..
Wang, X. Y.; Wang, Y. X.; Shi, X. C.; Liu, J. Y.; Chen, C. L.; Li, Y. S. Syntheses of well-defined functional isotactic poly- propylenes via efficient copolymerization of propylene withω-halo-α-alkenes by post-metallocene hafnium catalyst.Macromolecules2014,47, 552−559..
Mehdiabadi, S.; Soares, J. B. P. In-depth investigation of ethylene solution polymerization kinetics withrac-Et(Ind)2ZrCl2/MAO.Macromol. Chem. Phys.2013,214, 246−262..
Liu, S. J.; Yao, Z.; Cao, K.; Li, B. G.; Zhu, S. P. Preparation of polar ethylene–norbornene copolymers by metallocene terpolymerization with triisobutylaluminium-protected but-3-en -1-ol.Macromol. Rapid Commun.2009,30, 548−553..
Meng, Q. Q.; Wang, B.; Pan, L.; Li, Y. S.; Ma, Z. Synthesis and properties of isotactic polypropylene ionomers containing ammonium ions.Acta Polymerica Sinica(in Chinese) 2017 , 1762−1772..
Cui, J.; Nie, F. M.; Yang, J. X.; Pan, L.; Ma, Z.; Li, Y. S., Novel imidazolium-based poly(ionic liquid)s with different counterions for self-healing.J. Mater. Chem. A 2017 ,5, 25220−25229..
Zhang, J.; Mao, X. H.; Ma, Z.; Pan, L.; Wang, B.; Li, Y. S. High-performance polyethylene-ionomer-based thermoplastic elastomers exhibiting counteranion-mediated mechanical properties.Macromolecules2023,56, 4219−4230..
Pan, L.; Liu, Y. G.; Zhang, K. Y.; Bo, S. Q.; Li, Y. S. Investigation of the effect of branched structure on the performances of the copolymers synthesized from ethylene andα-olefin withrac-Et(Ind)2ZrCl2/MMAO catalyst system.Polymer2006,47, 1465−1472..
Eisenberg, A. Clustering of ions in organic polymers. A theoretical approach.Macromolecules1970,3, 147−154..
Eisenberg, A.; Hird, B.; Moore, R. B. A new multiplet-cluster model for the morphology of random ionomers.Macromolecules1990,23, 4098−4107..
Wakabayashi, K.; Register, R. A. Morphological origin of the multistep relaxation behavior in semicrystalline ethylene/ methacrylic acid ionomers.Macromolecules2006,39, 1079−1086..
Choi, U. H.; Lee, M.; Wang, S.; Liu, W.; Winey, K. I.; Gibson, H. W.; Colby, R. H. Ionic conduction and dielectric response of poly(imidazolium acrylate) ionomers.Macromolecules2012,45, 3974−3985..
Bates, C. M.; Maher, M. J.; Janes, D. W.; Ellison, C. J.; Willson, C. G. Block copolymer lithography.Macromolecules 2014 ,47, 2−12..
Richter, M. F.; Drown, B. S.; Riley, A. P.; Garcia, A.; Shirai, T.; Svec, R. L.; Hergenrother, P. J. Predictive rules for compound accumulation yield a broad-spectrum antibiotic.Nature2017,545, 299−304..
Tong, S. Y. C.; Davis, J. S.; Eichenberger, E.; Holland, T. L.; Fowler, V. G.Staphylococcus aureusinfections: epidemiology, pathophysiology, clinical manifestations, and management.Clin. Microbiol. Rev. 2015 ,28, 603−661..
Chung, Y. C.; Chen, C. Y. Antibacterial characteristics and activity of acid-soluble chitosan.Bioresour. Technol.2008,99, 2806−2814..
0
Views
19
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution