Fig 1 Schematic illustration of the preparation of HREP, HREP20/CF-HBPPF6 and the mechanism of interface strengthening of HREP20/CF-HBPPF6.
Published:01 October 2024,
Published Online:27 August 2024,
Received:30 April 2024,
Revised:10 June 2024,
Accepted:12 June 2024
Scan QR Code
Cite this article
Recycling of carbon fiber reinforced composites is important for sustainable development and the circular economy. Despite the use of dynamic chemistry, developing high-strength recyclable CFRPs remains a major challenge due to the mutual exclusivity between the dynamic and mechanical properties of materials. Here, we developed a high-strength recyclable epoxy resin (HREP) based on dynamic dithioacetal covalent adaptive network using diglycidyl ether bisphenol A (DGEBA), pentaerythritol tetra(3-mercapto-propionate) (PETMP), and vanillin epoxy resin (VEPR). At high temperatures, the exchange reaction of thermally activated dithioacetals accelerated the rearrangement of the network, giving it significant reprocessing ability. Moreover, HREP exhibited excellent solvent resistance due to the increased cross-linking density. Using this high-strength recyclable epoxy resin as the matrix and carbon fiber modified with hyperbranched ionic liquids (HBP-AMIM+PF6−) as the reinforcing agent, high performance CFRPs were successfully prepared. The tensile strength, interfacial shear strength (IFSS) and interlaminar shear strength (ILSS) of the optimized formulation (HREP20/CF-HBPPF6) were 1016.1, 70.8 and 76.0 MPa, respectively. In addition, the CFRPs demonstrated excellent solvent and acid/alkali-resistance. The CFRPs could completely degrade within 24 h in DMSO at 140 °C, and the recycled CF still maintained the same tensile strength and ILSS as the original after multiple degradation cycles.
Epoxy resin;
Hyperbranched ionic liquid;
Recycling;
Carbon fiber;
Composites
Carbon fiber reinforced epoxy resin composites (CFRPs) feature high strength, lightweight, easy manufacture, and high resistance to heat and corrosion, and are extensively used in many fields, including construction, aviation, automobiles, and wind energy.[
Recently, CANs based on imines,[
The interface interaction of CFRPs also plays an important role in its performance.[
As is well known, hyperbranched ionic liquids (HBPILs) have been widely applied due to their multifunctional terminals, low viscosity, high solubility and intramolecular cavities.[
Fig 1 Schematic illustration of the preparation of HREP, HREP20/CF-HBPPF6 and the mechanism of interface strengthening of HREP20/CF-HBPPF6.
Synthesis, characterizations, preparation processes and recycling of carbon fiber composites are included in electronic supplementary information (ESI).
The mechanical properties of HREP were presented in
Fig 1 (a) The stress-strain curves, (b) impact strength and flexural strength, (c) storage modulus and tanδ, (d) TG thermograms of HREP.
To further characterize the dynamic cross-linking of HREP, stress relaxation experiments were conducted at different temperatures. HREP were found to undergo dynamic exchange to reconstruct the cross-linking network. This reconstruction led to the release of internal stresses and exhibited dynamic characteristics. In the meantime, the cross-linking density remained almost the same.
Fig 2 (a) Stress relaxation curves of HREP20 at different temperatures; (b) Arrhenius plots and activation energy according to Arrhenius equation of HREP20; (c) Stress relaxation curves with different content of VEPR at 110 °C; (d) Schematic of dynamic exchange mechanism of HREP; (e) Schematic diagram of repeated processing; (f) The stress-strain curves, (g) storage modulus, (h) tanδ of HREP20 and reprocessed HREP20.
Dithioacetal model compounds (ESI, BAB and CAC, Fig. S4 in ESI) were synthesized to explore the dynamic exchange mechanism of dithioacetal dynamic networks. Under thermal induction, dithioacetals follow an associative mechanism, which is the exchange between two thioacetale structures. [
The recovery of surface scratches at 190 °C was evaluated using an optical microscope to estimate the self-healing performance of HREP20. Fig. S6 (in ESI) illustrates that the scratch width significantly decreased at 190 °C after 5 min, as a result of thermally activated chain rearrangement and the rapid recombination of dithioacetals at the damaged interface.[
The swelling and gel content of HREP20 are shown in Table S6 (in ESI). HREP20 showed lower swelling ratio (3.7%) and higher gel content (98.5%) compared with HREP0, suggesting the creation of well cross-linking network. In order to further evaluate the solvent resistance, HREP20 was placed in H2O, ethanol (EtOH), dimethylformamide (DMF), tetrahydrofuran (THF), acetonitrile (ACN), HCI (1 mol/L), NaOH (1 mol/L) and dimethyl sulfoxide (DMSO) at room temperature for 168 h (Fig. S7 in ESI). As seen, HREP had great solvent resistance except DMSO. The excellent solvent resistance of HREP is due to the considerable stability of dithioacetals in harsh environments.[
The hyperbranched polymer ionic liquid (HBP-AMIM+PF6−) functionalized CF (CF-HBPPF6) was developed to prepare CFRPs (
Fig 3 (a) FTIR spectra of virgin CF, CF-HBPPF6 and HBP-AMIM+PF6−; (b) Raman spectra of virgin CF and CF-HBPPF6; (c) XPS spectra of virgin CF and CF-HBPPF6, (d) C1s of virgin CF, (e) C1s of CF-HBPPF6 and (f) S2p of CF-HBPPF6; SEM images of (g) virgin CF and (h) CF-HBPPF6; (i) Stress-strain curves of virgin CF and CF-HBPPF6.
Fig. S8 (in ESI) shows the test results of the contact angle between CF and matrix resin. As seen, the contact angle decreased from 86° (virgin CF) to 53° (CF-HBPPF6), indicating a significant increase in surface energy. This improved wettability and compatibility between CF and epoxy resins were crucial for the interfacial enhancement of the composites.[
Fig. S9 (in ESI) presents the influence of the content of hyperbranched ionic liquids and the volume fraction of the matrix resin on the tensile properties of CFRPs. As seen, the tensile strength first increased and then decreased when the HBP-AMIM+PF6− content increased, and reached maximum (993 MPa) at a content of 8.5 g/mL (ESI, Fig. S9a). This is due to improved HBP-AMIM+PF6− penetration to the CF fabric as HBP-AMIM+PF6− content increased, increasing the compatibility and wettability between CF and the matrix resin, thereby increasing the interface interaction of the composites and increasing its tensile strength. However, the efficacious area between CF and the matrix resin was reduced when the HBP-AMIM+PF6− content was too high, and might also result in a decrease in tensile strength.[
The mechanical properties of optimized CFRPs with an HBP-AMIM+PF6- content of 8.5 g/ml and a resin volume fraction of 50 vol% were studied and illustrated in
Fig 4 (a) The stress-strain curves, (b) ILSS and IFSS of HREP20/CF and HREP20/CF-HBPPF6; (c) Comparison of tensile strength and ILSS with previously reported CF composites; (d) Tensile strength of HREP20/CF-HBPPF6 immersing in 3 mol/L HCI and 3 mol/L NaOH solutions at different time; SEM micrographs of (e) HREP20/CF and (f) HREP20/CF-HBPPF6; (g) Schematic diagram of the failure between CF and epoxy and enhancement mechanism.
The fracture surfaces of CFRPs were studied by SEM to further assess the interaction. There were some cracks on the fracture surfaces (
To evaluate the acid and alkaline resistance of HREP20/CF-HBPPF6 composites, samples were immersed in 3 mol/L HCI and 3 mol/L NaOH solutions at 60 °C for 7 days, with weight and tensile strength measured at different time intervals. Fig. S10 (in ESI) shows weight retention rates of 99.41% and 99.64% in HCI and NaOH solutions after 7 days, respectively. Similarly, the tensile strength of the samples remained basically unchanged (
The influence of temperature, time, and the solvent type/amount on the degree of degradation of HREP20/CF-HBPPF6were systematically investigated, as illustrated in Fig. S11 (in ESI). Figs. S11(a) and S11(b) (in ESI) indicate that the HREP20/CF-HBPPF6 can be fully degraded in DMSO at 140 for 24 h (
Fig 5 (a) The degradation process of HREP20/CF-HBPPF6; Real-time (b) 1H-NMR and (c) Raman spectra of HREP20/CF-HBPPF6 degradation solution during degradation; (d) Postulated degradation mechanism of HREP20/CF-HBPPF6.
Fig 6 (a−d) SEM images pristine and recycled carbon fibers; (e) XPS spectra, (f) Raman spectra, (g) XRD patterns and (h) the stress-strain curves of virgin and recycled carbon fibers; (i) The stress-strain curves, tensile modulus and (j) ILSS of original and recycled HREP20/CF-HBPPF6.
As shown in
In summary, we prepared a high-strength recyclable epoxy resin (HREP) with dynamic dithioacetal covalent adaptive network, which exhibited high mechanical performance and excellent solvent resistance, as well as excellent reprocessing/recycling properties. Subsequently, CFRPs were prepared with this high-strength recyclable epoxy resin and HBP-AMIM+PF6− modified CF. The tensile strength, IFSS and ILSS of modified CF composites (HREP20/CF-HBPPF6) reached 1016.1, 70.8 and 76.0 MPa, respectively. The increased mechanical strength and interfacial properties was due to the topological deformation of HBP-AMIM+PF6−, which effectively transferred stress. In addition, CF in CFRPs could achieve non-destructive recovery. The tensile property and ILSS retention rate of the reclaimed carbon fiber composites after 3 cycles were 99.6%, 89.0% and 99.3%, respectively.
Li, M. Z.; Yu, H. T.; Liu, X. Y.; Zhang, Q. H.; Feng, P. F.; Chi, Y. B.; Jian, X. G.; Song, Y. J.; Xu, J. Dual rapid self-healing and easily recyclable carbon fiber reinforced vitrimer composites.Chem. Eng. J.2024,480, 148147.. [Baidu Scholar]
Mao, L. H.; Jiao, Y. N.; Geng, H. H.; Tang, Y. H. Understanding friction and wear properties of carbon fiber/epoxy stitched composites.Compos. Part A Appl. Sci. Manuf.2023,169, 107501.. [Baidu Scholar]
Zheng, N.; Liu, H. Y.; Gao, J. F.; Mai, Y. W. Synergetic improvement of interlaminar fracture energy in carbon fiber/epoxy composites with nylon nanofiber/polycaprolactone blend interleaves.Compos. Part B Eng.2019,171, 320−328.. [Baidu Scholar]
Liu, Y. Y.; Lu, F.; Yang, L.; Wang, B. L.; Huang, Y. D.; Hu, Z. Closed-loop recycling of carbon fiber-reinforced composites enabled by a dual-dynamic cross-linked epoxy network.ACS Sustain. Chem. Eng.2023,11, 1527−1539.. [Baidu Scholar]
Xu, H.; Zhang, Y.; Wang, H.; Wu, J. R. Unraveling the heterogeneity of epoxy-amine networks by introducing dynamic covalent bonds.Chinese. J. Polym. Sci.2023,41, 926−932.. [Baidu Scholar]
Li, Z. J.; Zhong, J.; Liu, M. C.; Rong, J. C.; Yang, K.; Zhou, J. Y.; Shen, L.; Gao, F.; He, H. F. Investigation on self-healing property of epoxy resins based on disulfide dynamic links.Chinese. J. Polym. Sci.2020,38, 932−940.. [Baidu Scholar]
Chen, M. F.; Luo, W. H.; Lin, S. F.; Zheng, B. T.; Zhang, H. G. Recyclable, reprocessable, self-healing elastomer-like epoxy vitrimer with low dielectric permittivity and its closed-loop recyclable carbon fiber reinforced composite.Compos. Part B Eng.2023,257, 110666.. [Baidu Scholar]
Zhao, C. B.; Feng, L. K.; Xie, H.; Wang, M. L.; Guo, B.; Xue, Z. Y.; Zhu, C. Z.; Xu, J. High-performance recyclable furan-based epoxy resin and its carbon fiber composites with dense hydrogen bonding.Chinese. J. Polym. Sci.2023,41, 73−86.. [Baidu Scholar]
Liu, X. H.; Zhang, E. D.; Feng, Z. Q.; Liu, J. M.; Chen, B. F.; Liang, L.Y. Degradable bio-based epoxy vitrimers based on imine chemistry and their application in recyclable carbon fiber composites.J. Mater. Sci.2021,56, 15733−15751.. [Baidu Scholar]
Memon, H.; Wei, Y.; Zhang, L. Y.; Jiang, Q. R.; Liu, W. S. An imine-containing epoxy vitrimer with versatile recyclability and its application in fully recyclable carbon fiber reinforced composites.Compos. Sci. Technol.2020,199, 108314.. [Baidu Scholar]
Wang, Y. L.; Xu, A. C.; Zhang, L. W.; Chen, Z. C.; Qin, R. Y.; Liu, Y.; Jiang, X. C.; Ye, D. Z.; Liu, Z. J. Recyclable carbon fiber reinforced vanillin-based polyimine vitrimers: degradation and mechanical properties study.Macromol. Mater. Eng.2022,307, 2100893.. [Baidu Scholar]
Xu, Y. Z.; Zhang, H. B.; Dai, S. L.; Xu, S. C.; Wang, J.; Bi, L. W.; Jiang, J. X.; Chen, Y. X. Hyperbranched polyester catalyzed self-healing bio-based vitrimer for closed-loop recyclable carbon fiber-reinforced polymers.Compos. Sci. Technol.2022,228, 109676.. [Baidu Scholar]
Zhang, W. W.; Wu, J. Q.; Gao, L.; Zhang, B. Y.; Jiang, J. X.; Hu, J. Recyclable, reprocessable, self-adhered and repairable carbon fiber reinforced polymers using full biobased matrices from camphoric acid and epoxidized soybean oil.Green Chem.2021,23, 2763−2772.. [Baidu Scholar]
Hao, C.; Liu, T.; Liu, W.; Fei, M. E.; Shao, L.; Kuang, W. B.; Simmons, K. L.; Zhang, J. W. Recyclable CFRPs with extremely high Tg: hydrothermal recyclability in pure water and upcycling of the recyclates for new composite preparation.J. Mater. Chem. A2022,10, 15623−15633.. [Baidu Scholar]
Zhou, Z.; Kim, S.; Bowland, C. C.; Li, B.; Ghezawi, N.; Lara-Curzio, E.; Hassen, A.; Naskar, A. K.; Rahman, M. A.; Saito, T. Unraveling a path for multi-cycle recycling of tailored fiber-reinforced vitrimer composites.Cell Rep. Phys. Sci.2022,3, 101036.. [Baidu Scholar]
Rahman, M. A.; Karunarathna, M. S.; Bowland, C. C.; Yang, G.; Gainaru, C.; Li, B.; Kim, S.; Chawla, V.; Ghezawi, N.; Meyer, H. M.; Naskar, A. K.; Penumadu, D.; Sokolov, A. P.; Saito, T. Tough and recyclable carbon-fiber composites with exceptional interfacial adhesionviaa tailored vitrimer-fiber interface.Cell Rep. Phys. Sci.2023,4, 101695.. [Baidu Scholar]
Wang, S. J.; Xing, X. L.; Zhang, X. T.; Wang, X.; Jing, X. L. Room-temperature fully recyclable carbon fibre reinforced phenolic composites through dynamic covalent boronic ester bonds.J. Mater. Chem. A2018,6, 10868−10878.. [Baidu Scholar]
Wang, S.; Fu, D. H.; Wang, X. R.; Pu, W. L.; Martone, A.; Lu, X. L.; Lavorgna, M.; Wang, Z. H.; Amendola, E.; Xia, H. S. High performance dynamic covalent crosslinked polyacylsemicarbazide composites with self-healing and recycling capabilities.J. Mater. Chem. A2021,9, 4055−4065.. [Baidu Scholar]
Jian, Z. W.; Wang, Y. D.; Zhang, X. K.; Yang, X.; Wang, Z. H.; Lu, X. L.; Xia, H. S. Fully recyclable high-performance polyacylsemicarbazide/carbon fiber composites.J. Mater. Chem. A2023,11, 21231−21243.. [Baidu Scholar]
Gu, S.; Xiao, Y. F.; Tan, S. H.; Liu, B. W.; Guo, D. M.; Wang, Y. Z.; Chen, L. Neighboring molecular engineering in Diels-Alder chemistry enabling easily recyclable carbon fiber reinforced composites.Angew. Chem. Int. Ed.2023,62, e202312638.. [Baidu Scholar]
Gu, S.; Xu, S. D.; Lu, J. H.; Pu, X. L.; Ren, Q. R.; Xiao, Y. F.; Wang, Y. Z.; Chen, L. Phosphonate-influenced Diels-Alder chemistry toward multi-path recyclable, fire safe thermoset and its carbon fiber composites.EcoMat.2023,5, e12388.. [Baidu Scholar]
Heo, Y.; Malakooti, M. H.; Sodano, H. A. Self-healing polymers and composites for extreme environments.J. Mater. Chem. A2016,4, 17403−17411.. [Baidu Scholar]
Zeng, H.; Tang, Z. H.; Duan, Y.; Wu, S. W.; Guo, B. C. Recyclable crosslinked elastomer based on dynamic dithioacetals.Polymer2021,229, 124007.. [Baidu Scholar]
Jin, Y.; Hu, C. C.; Wang, J.; Ding, Y. L.; Shi, J. J.; Wang, Z. K.; Xu, S. C.; Yuan, L. Thiol-aldehyde polycondensation for bio-based adaptable and degradable phenolic polymers.Angew. Chem. Int. Ed.2023,62, e202305677.. [Baidu Scholar]
Hu, C.C.; Jin, Y.; Tian, W. M.; Yan K. L.; Wang, J.; Yuan, L. Photodegradable dynamic polyurethane networks via dithioacetals.Macromolecules2024,57, 1725−1733.. [Baidu Scholar]
Zhang, X. Q.; Sun, T.; Qiu, B. W.; Liang, M.; Zou, H. W. Investigation on interlaminar behavior of different morphology GO structured carbon fiber reinforced epoxy composites.Compos. Part B Eng.2022,230, 109492.. [Baidu Scholar]
Qin, W. Z.; Lei, K. X.; Yan, M. L.; Li, Z. K.; Yan, Y.; Hu, Y. W.; Wu, Z. J.; He, J. W.; Chen, L. Carbon fiber-reinforced epoxy composite properties improvement by incorporation of polydopamine sizing at fiber–matrix interface.Polym. Compos.2023,44, 2441−2448.. [Baidu Scholar]
Liu, J. K.; Dai, J. Y.; Zhao, W. W.; Yu, W. J.; Liu, X. Q. Synthesis of sustainable thermosetting resins: High performance and functionalization.Acta Polymerica Sinica(in Chinese)2022,53, 107−118.. [Baidu Scholar]
Xu, H. B.; Zhang, X. Q.; Liu, D.; Yan, C.; Chen, X.; Hui, D.; Zhu, Y. D. Cyclomatrix-type polyphosphazene coating: Improving interfacial property of carbon fiber/epoxy composites and preserving fiber tensile strength.Compos. Part B Eng.2016,93, 244−251.. [Baidu Scholar]
Song, B.; Wang, T. T.; Wang, L.; Liu, H.; Mai, X. M.; Wang, X. J.; Wang, N.; Huang, Y. D.; Ma, Y.; Lu, Y.; Wujcik, E. K.; Guo, Z. H. Interfacially reinforced carbon fiber/epoxy composite laminates via in-situ synthesized graphitic carbon nitride (g-C3N4).Compos. Part B Eng.2019,158, 259−268.. [Baidu Scholar]
Zeng, L.; Liu, X. Q.; Chen, X. G.; Soutis, C.π-πInteraction between carbon fibre and epoxy resin for interface improvement in composites.Compos. Part B Eng.2021,220.. [Baidu Scholar]
Xu, H. F.; Hu, J. R.; Liu, X.; Wu, H. H.; Jiang, Y.; Xu, Z. J.; Chen, S. F.; Li, T. C.; Zhang, J. H. Interface strengthening and high-value recycling of epoxy resin/carbon fiber fabric composites.Chem. Eng. J.2023,465, 142998.. [Baidu Scholar]
Liang, N.; Liu, X.; Hu, J. R.; Wu, Y.; Peng, M. J.; Ma, Y. K.; Jiang, Y.; Cheng, J.; Chen, S. F.; Zhang, D. H. Influence of topological structure on mechanical property of recyclable bio-based hyperbranched epoxy/carbon fiber fabric composites.Chem. Eng. J.2023,471, 144329.. [Baidu Scholar]
Ma, X.; Wu, Y.; Liang, N.; Xu, H. F.; Xu, Z. J.; Chen, S. F.; Zhang, D. H. High-efficiently renewable hyperbranched epoxy resin/carbon fiber composites with both long service life and high performance.Compos. Commun.2023,40, 101630.. [Baidu Scholar]
Maksimov, A.; Kutyrev, G. Functionalized hyperbranched aliphatic polyester polyols: synthesis, properties and applications.Chinese J. Polym. Sci.2022,40, 1567−1585.. [Baidu Scholar]
Shi, L. L.; Song, G. J.; Li, P. Y.; Li, X. R.; Pan, D.; Huang, Y. D.; Ma, L. C.; Guo, Z. H. Enhancing interfacial performance of epoxy resin compositesvia in-situnucleophilic addition polymerization modification of carbon fibers with hyperbranched polyimidazole.Compos. Sci. Technol.2021,201, 108522.. [Baidu Scholar]
Zhang, J. H.; Chen, S. Y.; Qin, B.; Zhang, D. H.; Guo, P.; He, Q. J. Preparation of hyperbranched polymeric ionic liquids for epoxy resin with simultaneous improvement of strength and toughness.Polymer2019,164, 154−162.. [Baidu Scholar]
Chen, S. Y.; Zhang, J. H.; Zhou, J. L.; Zhang, D. H.; Zhang, A. Q. Dramatic toughness enhancement of benzoxazine/epoxy thermosets with a novel hyperbranched polymeric ionic liquid.Chem. Eng. J.2018,334, 1371−1382.. [Baidu Scholar]
Ghafoor, B.; Schrekker, H. S.; Morais, J.; Amico, S. C. Surface modification of carbon fiber with imidazolium ionic liquids.Compos. Interfaces2022,29, 915−927.. [Baidu Scholar]
Yuan, Y.; Wang, X. H.; Liu, X. Y.; Qian, J.; Zuo, P. Y.; Zhuang, Q. X. Non-covalently modified graphene@poly(ionic liquid) nanocomposite with high-temperature resistance and enhanced dielectric properties.Compos. Part A Appl. Sci. Manuf.2022,154, 106800.. [Baidu Scholar]
Joseph, S.; Francis, B. Non-covalent interactions between ionic liquid and graphene nanoplatelets as a tool to fine tune the properties of styrene butadiene rubber nanocomposites.J. Appl. Polym. Sci.2023,140, e54573.. [Baidu Scholar]
Gao, C. Q.; Guo, M. Y.; Liu, Y. K.; Zhang, D. Y.; Gao, F.; Sun, L.; Li, J. S.; Chen, X. C.; Terrones, M.; Wang, Y. Q. Surface modification methods and mechanisms in carbon nanotubes dispersion.Carbon.2023,212.. [Baidu Scholar]
Vargas, P. C.; Merlini, C.; Livi, S.; de Nardi Martins, J.; Soares, B. G.; Barra, G. M. O. The influence of carbon nanotubes and exfoliated graphite nanoplatelets modified by phosphonium-based ionic liquids on polyurethane composites.J. Appl. Polym. Sci.2023,140, e54289.. [Baidu Scholar]
Ye, J. L.; Ma, S. Q.; Wang, B. B.; Chen, Q. M.; Huang, K. F.; Xu, X. W.; Li, Q.; Wang, S.; Lu, N.; Zhu, J. High-performance bio-based epoxies from ferulic acid and furfuryl alcohol: synthesis and properties.Green Chem.2021,23, 1772−1781.. [Baidu Scholar]
Liu, Y. J.; Tang, Z. H.; Chen, J. L.; Xiong, J. K.; Wang, D.; Wang, S.; Wu, S. W.; Guo, B. C. Tuning the mechanical and dynamic properties of imine bond crosslinked elastomeric vitrimers by manipulating the crosslinking degree.Polym. Chem.2020,11, 1348−1355.. [Baidu Scholar]
Ghafoor, B.; Schrekker, H. S.; Amico, S. C. Multifunctional characteristics of carbon fibers modified with imidazolium ionic liquids.Molecules2022,27, 7001.. [Baidu Scholar]
Fatona, A.; Moran-Mirabal, J.; Brook, M. A. Controlling silicone networks using dithioacetal crosslinks.Polym. Chem.2019,10, 219−227.. [Baidu Scholar]
Jung, Y. H.; Kang, H.; Choi, W. S.; Joung, Y. H.; Choi, Y. K. Effects of plasma treatment on carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition.J. Nanosci. Nanotechnol.2016,16, 5291−5294.. [Baidu Scholar]
Ma, L. C.; Zhu, Y. Y.; Wang, M. Z.; Yang, X. B.; Song, G. J.; Huang, Y. D. Enhancing interfacial strength of epoxy resin compositesviaevolving hyperbranched amino-terminated POSS on carbon fiber surface.Compos. Sci. Technol.2019,170, 148−156.. [Baidu Scholar]
Duan, Q.; Wang, S. Y.; Wang, Q. F.; Li, T.; Chen, S. F.; Miao, M. H.; Zhang, D. H. Simultaneous improvement on strength, modulus, and elongation of carbon nanotube films functionalized by hyperbranched polymers.ACS Appl. Mater. Interfaces.2019,11, 36278−36285.. [Baidu Scholar]
Fu, Y.; Zhou, H. M.; Zhou, L. M. Phase-microstructure-mechanical properties relationship of carbon fiber reinforced ionic liquid epoxy composites.Compos. Sci. Technol.2021,207, 108711.. [Baidu Scholar]
Rao, F.; Ji, Y. H.; Li, N.; Zhang, Y. H.; Chen, Y. H.; Yu, W. J. Outdoor bamboo-fiber-reinforced composite: Influence of resin content on water resistance and mechanical properties.Constr. Build. Mater.2020,261, 120022.. [Baidu Scholar]
Shen, J. W.; He, Y.; Gao, C.; Yang, B.; Tao, X. M.; Wang, M.; Ye, G. X. Catalyst-free growth of single- to few-layered graphene and carbon nanotubes on an ionic liquid surface.Colloids Surf. A Physicochem. Eng. Asp.2022,653, 130025.. [Baidu Scholar]
Zhang, M. Q. Self-healing polymeric materials: on a winding road to success.Chinese J. Polym. Sci.2022,40, 1315−1316.. [Baidu Scholar]
Xu, N.; Li, Y. Z.; Zheng, T.; Xiao, L.; Liu, Y. Y.; Chen, S. H.; Zhang, D. X. A mussel-inspired strategy for CNT/carbon fiber reinforced epoxy composite by hierarchical surface modification.Colloids Surf. A Physicochem. Eng. Asp.2022,635, 128085.. [Baidu Scholar]
Yang, L.; Han, P.; Gu, Z. Grafting of a novel hyperbranched polymer onto carbon fiber for interfacial enhancement of carbon fiber reinforced epoxy composites.Mater. Des.2021,200, 109456.. [Baidu Scholar]
Feng, P. F.; Song, G. J.; Zhang, W. J.; Zheng, H.; Li, B. W.; Zhou, S. F.; Liu, Y. Q.; Wu, G. S.; Ma, L. C. Interfacial improvement of carbon fiber/epoxy composites by incorporating superior and versatile multiscale gradient modulus intermediate layer with rigid-flexible hierarchical structure.Chinese J. Polym. Sci.2021,39, 896−905.. [Baidu Scholar]
Zhang, X. K.; Cai, S. B.; Jian, Z. W.; Yang, X.; Wang, Y. D.; Wang, Z. H.; Lu, X. L.; Xia, H. S. Degradable carbon fiber-reinforced epoxy resin composites based on dynamic benzyl ether bonds.Ind. Eng. Chem. Res.2023,62, 18473−18483.. [Baidu Scholar]
Li, P. Y.; Ma, S. Q.; Wang, B, B.; Xu, X. W.; Feng, H. Z.; Yu, Z.; Yu, T.; Liu, Y. L.; Zhu, J. Degradable benzyl cyclic acetal epoxy monomers with low viscosity.Compos. Sci. Technol.2022,219, 109143.. [Baidu Scholar]
Kumar, A.; Sharma, K.; Dixit, A. R. Tensile, flexural and interlaminar shear strength of carbon fiber reinforced epoxy composites modified by graphene.Polym. Bull.2023,80, 7469−7490.. [Baidu Scholar]
Feng, H. Z.; Xu, X. W.; Wang, B. B.; Su, Y.; Liu, Y. L.; Zhang, C. Z.; Zhu, J.; Ma, S. Q. Facile preparation, closed-loop recycling of multifunctional carbon fiber reinforced polymer composites.Compos. Part B Eng.2023,257, 110677.. [Baidu Scholar]
Zhao, Z. H.; Wu, J. Q.; Gao, L.; Gong, H. J.; Guo, Z. K.; Zhang, B. Y.; Li, M. H.; Hu, J. Auto-catalytic high-performance recyclable carbon fiber reinforced epoxy.Compos. Part A Appl. Sci. Manuf.2022,162, 107160.. [Baidu Scholar]
He, M.; Xu, P.; Zhang, Y. J.; Liu, K. S., Yang, X. P. Phthalocyanine nanowires@GO/carbon fiber composites with enhanced interfacial properties and electromagnetic interference shielding performance.Chem. Eng. J.2020,388, 124255.. [Baidu Scholar]
Xu, P.; Yu, Y. H.; Liu, D. W.; He, M.; Li, G.; Yang, X. P. Enhanced interfacial and mechanical properties of high-modulus carbon fiber composites: Establishing modulus intermediate layer between fiber and matrix based on tailored-modulus epoxy.Compos. Sci. Technol.2018,163, 26−33.. [Baidu Scholar]
192
Views
714
Downloads
0
CSCD
Related Articles
Related Author
Related Institution