FOLLOWUS
a.Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R & D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China
b.State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
c.Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China
wunderfool@126.com (T.C.L.)
mcjhzhang@gmail.com (J.H.Z.)
Published:01 October 2024,
Published Online:27 August 2024,
Received:30 April 2024,
Revised:10 June 2024,
Accepted:12 June 2024
Scan QR Code
Shi, G. L.; Li, T. C.; Zhang, D. H.; Zhang, J. H. Recyclable high-performance carbon fiber reinforced epoxy composites based on dithioacetal covalent adaptive network. Chinese J. Polym. Sci. 2024, 42, 1514–1524
Gui-Lian Shi, Ting-Cheng Li, Dao-Hong Zhang, et al. Recyclable High-performance Carbon Fiber Reinforced Epoxy Composites Based on Dithioacetal Covalent Adaptive Network. [J]. Chinese Journal of Polymer Science 42(10):1514-1524(2024)
Shi, G. L.; Li, T. C.; Zhang, D. H.; Zhang, J. H. Recyclable high-performance carbon fiber reinforced epoxy composites based on dithioacetal covalent adaptive network. Chinese J. Polym. Sci. 2024, 42, 1514–1524 DOI: 10.1007/s10118-024-3191-8.
Gui-Lian Shi, Ting-Cheng Li, Dao-Hong Zhang, et al. Recyclable High-performance Carbon Fiber Reinforced Epoxy Composites Based on Dithioacetal Covalent Adaptive Network. [J]. Chinese Journal of Polymer Science 42(10):1514-1524(2024) DOI: 10.1007/s10118-024-3191-8.
We develop a green and sustainable strategy toward closing the loop on carbon fiber reinforced epoxy composites recycling via dynamic dithioacetals. This work presents a pivotal step for sustainable management of end-of-life carbon fiber reinforced epoxy composites
paving the way to a circular economy.
Recycling of carbon fiber reinforced composites is important for sustainable development and the circular economy. Despite the use of dyn
amic chemistry
developing high-strength recyclable CFRPs remains a major challenge due to the mutual exclusivity between the dynamic and mechanical properties of materials. Here
we developed a high-strength recyclable epoxy resin (HREP) based on dynamic dithioacetal covalent adaptive network using diglycidyl ether bisphenol A (DGEBA)
pentaerythritol tetra(3-mercapto-propionate) (PETMP)
and vanillin epoxy resin (VEPR). At high temperatures
the exchange reaction of thermally activated dithioacetals accelerated the rearrangement of the network
giving it significant reprocessing ability. Moreover
HREP exhibited excellent solvent resistance due to the increased cross-linking density. Using this high-strength recyclable epoxy resin as the matrix and carbon fiber modified with hyperbranched ionic liquids (HBP-AMIM
+
PF
6
−
) as the reinforcing agent
high performance CFRPs were successfully prepared. The tensile strength
interfacial shear strength (IFSS) and interlaminar shear strength (ILSS) of the optimized formulation (HREP20/CF-HBPPF
6
) were 1016.1
70.8 and 76.0 MPa
respectively. In addition
the CFRPs demonstrated excellent solvent and acid/alkali-resistance. The CFRPs could completely degrade within 24 h in DMSO at 140 °C
and the recycled CF still maintained the same tensile strength and ILSS as the original after multiple degradation cycles.
Epoxy resinHyperbranched ionic liquidRecyclingCarbon fiberComposites
Li, M. Z.; Yu, H. T.; Liu, X. Y.; Zhang, Q. H.; Feng, P. F.; Chi, Y. B.; Jian, X. G.; Song, Y. J.; Xu, J. Dual rapid self-healing and easily recyclable carbon fiber reinforced vitrimer composites.Chem. Eng. J.2024,480, 148147..
Mao, L. H.; Jiao, Y. N.; Geng, H. H.; Tang, Y. H. Understanding friction and wear properties of carbon fiber/epoxy stitched composites.Compos. Part A Appl. Sci. Manuf.2023,169, 107501..
Zheng, N.; Liu, H. Y.; Gao, J. F.; Mai, Y. W. Synergetic improvement of interlaminar fracture energy in carbon fiber/epoxy composites with nylon nanofiber/polycaprolactone blend interleaves.Compos. Part B Eng.2019,171, 320−328..
Liu, Y. Y.; Lu, F.; Yang, L.; Wang, B. L.; Huang, Y. D.; Hu, Z. Closed-loop recycling of carbon fiber-reinforced composites enabled by a dual-dynamic cross-linked epoxy network.ACS Sustain. Chem. Eng.2023,11, 1527−1539..
Xu, H.; Zhang, Y.; Wang, H.; Wu, J. R. Unraveling the heterogeneity of epoxy-amine networks by introducing dynamic covalent bonds.Chinese. J. Polym. Sci.2023,41, 926−932..
Li, Z. J.; Zhong, J.; Liu, M. C.; Rong, J. C.; Yang, K.; Zhou, J. Y.; Shen, L.; Gao, F.; He, H. F. Investigation on self-healing property of epoxy resins based on disulfide dynamic links.Chinese. J. Polym. Sci.2020,38, 932−940..
Chen, M. F.; Luo, W. H.; Lin, S. F.; Zheng, B. T.; Zhang, H. G. Recyclable, reprocessable, self-healing elastomer-like epoxy vitrimer with low dielectric permittivity and its closed-loop recyclable carbon fiber reinforced composite.Compos. Part B Eng.2023,257, 110666..
Zhao, C. B.; Feng, L. K.; Xie, H.; Wang, M. L.; Guo, B.; Xue, Z. Y.; Zhu, C. Z.; Xu, J. High-performance recyclable furan-based epoxy resin and its carbon fiber composites with dense hydrogen bonding.Chinese. J. Polym. Sci.2023,41, 73−86..
Liu, X. H.; Zhang, E. D.; Feng, Z. Q.; Liu, J. M.; Chen, B. F.; Liang, L.Y. Degradable bio-based epoxy vitrimers based on imine chemistry and their application in recyclable carbon fiber composites.J. Mater. Sci.2021,56, 15733−15751..
Memon, H.; Wei, Y.; Zhang, L. Y.; Jiang, Q. R.; Liu, W. S. An imine-containing epoxy vitrimer with versatile recyclability and its application in fully recyclable carbon fiber reinforced composites.Compos. Sci. Technol.2020,199, 108314..
Wang, Y. L.; Xu, A. C.; Zhang, L. W.; Chen, Z. C.; Qin, R. Y.; Liu, Y.; Jiang, X. C.; Ye, D. Z.; Liu, Z. J. Recyclable carbon fiber reinforced vanillin-based polyimine vitrimers: degradation and mechanical properties study.Macromol. Mater. Eng.2022,307, 2100893..
Xu, Y. Z.; Zhang, H. B.; Dai, S. L.; Xu, S. C.; Wang, J.; Bi, L. W.; Jiang, J. X.; Chen, Y. X. Hyperbranched polyester catalyzed self-healing bio-based vitrimer for closed-loop recyclable carbon fiber-reinforced polymers.Compos. Sci. Technol.2022,228, 109676..
Zhang, W. W.; Wu, J. Q.; Gao, L.; Zhang, B. Y.; Jiang, J. X.; Hu, J. Recyclable, reprocessable, self-adhered and repairable carbon fiber reinforced polymers using full biobased matrices from camphoric acid and epoxidized soybean oil.Green Chem.2021,23, 2763−2772..
Hao, C.; Liu, T.; Liu, W.; Fei, M. E.; Shao, L.; Kuang, W. B.; Simmons, K. L.; Zhang, J. W. Recyclable CFRPs with extremely high Tg: hydrothermal recyclability in pure water and upcycling of the recyclates for new composite preparation.J. Mater. Chem. A2022,10, 15623−15633..
Zhou, Z.; Kim, S.; Bowland, C. C.; Li, B.; Ghezawi, N.; Lara-Curzio, E.; Hassen, A.; Naskar, A. K.; Rahman, M. A.; Saito, T. Unraveling a path for multi-cycle recycling of tailored fiber-reinforced vitrimer composites.Cell Rep. Phys. Sci.2022,3, 101036..
Rahman, M. A.; Karunarathna, M. S.; Bowland, C. C.; Yang, G.; Gainaru, C.; Li, B.; Kim, S.; Chawla, V.; Ghezawi, N.; Meyer, H. M.; Naskar, A. K.; Penumadu, D.; Sokolov, A. P.; Saito, T. Tough and recyclable carbon-fiber composites with exceptional interfacial adhesionviaa tailored vitrimer-fiber interface.Cell Rep. Phys. Sci.2023,4, 101695..
Wang, S. J.; Xing, X. L.; Zhang, X. T.; Wang, X.; Jing, X. L. Room-temperature fully recyclable carbon fibre reinforced phenolic composites through dynamic covalent boronic ester bonds.J. Mater. Chem. A2018,6, 10868−10878..
Wang, S.; Fu, D. H.; Wang, X. R.; Pu, W. L.; Martone, A.; Lu, X. L.; Lavorgna, M.; Wang, Z. H.; Amendola, E.; Xia, H. S. High performance dynamic covalent crosslinked polyacylsemicarbazide composites with self-healing and recycling capabilities.J. Mater. Chem. A2021,9, 4055−4065..
Jian, Z. W.; Wang, Y. D.; Zhang, X. K.; Yang, X.; Wang, Z. H.; Lu, X. L.; Xia, H. S. Fully recyclable high-performance polyacylsemicarbazide/carbon fiber composites.J. Mater. Chem. A2023,11, 21231−21243..
Gu, S.; Xiao, Y. F.; Tan, S. H.; Liu, B. W.; Guo, D. M.; Wang, Y. Z.; Chen, L. Neighboring molecular engineering in Diels-Alder chemistry enabling easily recyclable carbon fiber reinforced composites.Angew. Chem. Int. Ed.2023,62, e202312638..
Gu, S.; Xu, S. D.; Lu, J. H.; Pu, X. L.; Ren, Q. R.; Xiao, Y. F.; Wang, Y. Z.; Chen, L. Phosphonate-influenced Diels-Alder chemistry toward multi-path recyclable, fire safe thermoset and its carbon fiber composites.EcoMat.2023,5, e12388..
Heo, Y.; Malakooti, M. H.; Sodano, H. A. Self-healing polymers and composites for extreme environments.J. Mater. Chem. A2016,4, 17403−17411..
Zeng, H.; Tang, Z. H.; Duan, Y.; Wu, S. W.; Guo, B. C. Recyclable crosslinked elastomer based on dynamic dithioacetals.Polymer2021,229, 124007..
Jin, Y.; Hu, C. C.; Wang, J.; Ding, Y. L.; Shi, J. J.; Wang, Z. K.; Xu, S. C.; Yuan, L. Thiol-aldehyde polycondensation for bio-based adaptable and degradable phenolic polymers.Angew. Chem. Int. Ed.2023,62, e202305677..
Hu, C.C.; Jin, Y.; Tian, W. M.; Yan K. L.; Wang, J.; Yuan, L. Photodegradable dynamic polyurethane networks via dithioacetals.Macromolecules2024,57, 1725−1733..
Zhang, X. Q.; Sun, T.; Qiu, B. W.; Liang, M.; Zou, H. W. Investigation on interlaminar behavior of different morphology GO structured carbon fiber reinforced epoxy composites.Compos. Part B Eng.2022,230, 109492..
Qin, W. Z.; Lei, K. X.; Yan, M. L.; Li, Z. K.; Yan, Y.; Hu, Y. W.; Wu, Z. J.; He, J. W.; Chen, L. Carbon fiber-reinforced epoxy composite properties improvement by incorporation of polydopamine sizing at fiber–matrix interface.Polym. Compos.2023,44, 2441−2448..
Liu, J. K.; Dai, J. Y.; Zhao, W. W.; Yu, W. J.; Liu, X. Q. Synthesis of sustainable thermosetting resins: High performance and functionalization.Acta Polymerica Sinica(in Chinese)2022,53, 107−118..
Xu, H. B.; Zhang, X. Q.; Liu, D.; Yan, C.; Chen, X.; Hui, D.; Zhu, Y. D. Cyclomatrix-type polyphosphazene coating: Improving interfacial property of carbon fiber/epoxy composites and preserving fiber tensile strength.Compos. Part B Eng.2016,93, 244−251..
Song, B.; Wang, T. T.; Wang, L.; Liu, H.; Mai, X. M.; Wang, X. J.; Wang, N.; Huang, Y. D.; Ma, Y.; Lu, Y.; Wujcik, E. K.; Guo, Z. H. Interfacially reinforced carbon fiber/epoxy composite laminates via in-situ synthesized graphitic carbon nitride (g-C3N4).Compos. Part B Eng.2019,158, 259−268..
Zeng, L.; Liu, X. Q.; Chen, X. G.; Soutis, C.π-πInteraction between carbon fibre and epoxy resin for interface improvement in composites.Compos. Part B Eng.2021,220..
Xu, H. F.; Hu, J. R.; Liu, X.; Wu, H. H.; Jiang, Y.; Xu, Z. J.; Chen, S. F.; Li, T. C.; Zhang, J. H. Interface strengthening and high-value recycling of epoxy resin/carbon fiber fabric composites.Chem. Eng. J.2023,465, 142998..
Liang, N.; Liu, X.; Hu, J. R.; Wu, Y.; Peng, M. J.; Ma, Y. K.; Jiang, Y.; Cheng, J.; Chen, S. F.; Zhang, D. H. Influence of topological structure on mechanical property of recyclable bio-based hyperbranched epoxy/carbon fiber fabric composites.Chem. Eng. J.2023,471, 144329..
Ma, X.; Wu, Y.; Liang, N.; Xu, H. F.; Xu, Z. J.; Chen, S. F.; Zhang, D. H. High-efficiently renewable hyperbranched epoxy resin/carbon fiber composites with both long service life and high performance.Compos. Commun.2023,40, 101630..
Maksimov, A.; Kutyrev, G. Functionalized hyperbranched aliphatic polyester polyols: synthesis, properties and applications.Chinese J. Polym. Sci.2022,40, 1567−1585..
Shi, L. L.; Song, G. J.; Li, P. Y.; Li, X. R.; Pan, D.; Huang, Y. D.; Ma, L. C.; Guo, Z. H. Enhancing interfacial performance of epoxy resin compositesvia in-situnucleophilic addition polymerization modification of carbon fibers with hyperbranched polyimidazole.Compos. Sci. Technol.2021,201, 108522..
Zhang, J. H.; Chen, S. Y.; Qin, B.; Zhang, D. H.; Guo, P.; He, Q. J. Preparation of hyperbranched polymeric ionic liquids for epoxy resin with simultaneous improvement of strength and toughness.Polymer2019,164, 154−162..
Chen, S. Y.; Zhang, J. H.; Zhou, J. L.; Zhang, D. H.; Zhang, A. Q. Dramatic toughness enhancement of benzoxazine/epoxy thermosets with a novel hyperbranched polymeric ionic liquid.Chem. Eng. J.2018,334, 1371−1382..
Ghafoor, B.; Schrekker, H. S.; Morais, J.; Amico, S. C. Surface modification of carbon fiber with imidazolium ionic liquids.Compos. Interfaces2022,29, 915−927..
Yuan, Y.; Wang, X. H.; Liu, X. Y.; Qian, J.; Zuo, P. Y.; Zhuang, Q. X. Non-covalently modified graphene@poly(ionic liquid) nanocomposite with high-temperature resistance and enhanced dielectric properties.Compos. Part A Appl. Sci. Manuf.2022,154, 106800..
Joseph, S.; Francis, B. Non-covalent interactions between ionic liquid and graphene nanoplatelets as a tool to fine tune the properties of styrene butadiene rubber nanocomposites.J. Appl. Polym. Sci.2023,140, e54573..
Gao, C. Q.; Guo, M. Y.; Liu, Y. K.; Zhang, D. Y.; Gao, F.; Sun, L.; Li, J. S.; Chen, X. C.; Terrones, M.; Wang, Y. Q. Surface modification methods and mechanisms in carbon nanotubes dispersion.Carbon.2023,212..
Vargas, P. C.; Merlini, C.; Livi, S.; de Nardi Martins, J.; Soares, B. G.; Barra, G. M. O. The influence of carbon nanotubes and exfoliated graphite nanoplatelets modified by phosphonium-based ionic liquids on polyurethane composites.J. Appl. Polym. Sci.2023,140, e54289..
Ye, J. L.; Ma, S. Q.; Wang, B. B.; Chen, Q. M.; Huang, K. F.; Xu, X. W.; Li, Q.; Wang, S.; Lu, N.; Zhu, J. High-performance bio-based epoxies from ferulic acid and furfuryl alcohol: synthesis and properties.Green Chem.2021,23, 1772−1781..
Liu, Y. J.; Tang, Z. H.; Chen, J. L.; Xiong, J. K.; Wang, D.; Wang, S.; Wu, S. W.; Guo, B. C. Tuning the mechanical and dynamic properties of imine bond crosslinked elastomeric vitrimers by manipulating the crosslinking degree.Polym. Chem.2020,11, 1348−1355..
Ghafoor, B.; Schrekker, H. S.; Amico, S. C. Multifunctional characteristics of carbon fibers modified with imidazolium ionic liquids.Molecules2022,27, 7001..
Fatona, A.; Moran-Mirabal, J.; Brook, M. A. Controlling silicone networks using dithioacetal crosslinks.Polym. Chem.2019,10, 219−227..
Jung, Y. H.; Kang, H.; Choi, W. S.; Joung, Y. H.; Choi, Y. K. Effects of plasma treatment on carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition.J. Nanosci. Nanotechnol.2016,16, 5291−5294..
Ma, L. C.; Zhu, Y. Y.; Wang, M. Z.; Yang, X. B.; Song, G. J.; Huang, Y. D. Enhancing interfacial strength of epoxy resin compositesviaevolving hyperbranched amino-terminated POSS on carbon fiber surface.Compos. Sci. Technol.2019,170, 148−156..
Duan, Q.; Wang, S. Y.; Wang, Q. F.; Li, T.; Chen, S. F.; Miao, M. H.; Zhang, D. H. Simultaneous improvement on strength, modulus, and elongation of carbon nanotube films functionalized by hyperbranched polymers.ACS Appl. Mater. Interfaces.2019,11, 36278−36285..
Fu, Y.; Zhou, H. M.; Zhou, L. M. Phase-microstructure-mechanical properties relationship of carbon fiber reinforced ionic liquid epoxy composites.Compos. Sci. Technol.2021,207, 108711..
Rao, F.; Ji, Y. H.; Li, N.; Zhang, Y. H.; Chen, Y. H.; Yu, W. J. Outdoor bamboo-fiber-reinforced composite: Influence of resin content on water resistance and mechanical properties.Constr. Build. Mater.2020,261, 120022..
Shen, J. W.; He, Y.; Gao, C.; Yang, B.; Tao, X. M.; Wang, M.; Ye, G. X. Catalyst-free growth of single- to few-layered graphene and carbon nanotubes on an ionic liquid surface.Colloids Surf. A Physicochem. Eng. Asp.2022,653, 130025..
Zhang, M. Q. Self-healing polymeric materials: on a winding road to success.Chinese J. Polym. Sci.2022,40, 1315−1316..
Xu, N.; Li, Y. Z.; Zheng, T.; Xiao, L.; Liu, Y. Y.; Chen, S. H.; Zhang, D. X. A mussel-inspired strategy for CNT/carbon fiber reinforced epoxy composite by hierarchical surface modification.Colloids Surf. A Physicochem. Eng. Asp.2022,635, 128085..
Yang, L.; Han, P.; Gu, Z. Grafting of a novel hyperbranched polymer onto carbon fiber for interfacial enhancement of carbon fiber reinforced epoxy composites.Mater. Des.2021,200, 109456..
Feng, P. F.; Song, G. J.; Zhang, W. J.; Zheng, H.; Li, B. W.; Zhou, S. F.; Liu, Y. Q.; Wu, G. S.; Ma, L. C. Interfacial improvement of carbon fiber/epoxy composites by incorporating superior and versatile multiscale gradient modulus intermediate layer with rigid-flexible hierarchical structure.Chinese J. Polym. Sci.2021,39, 896−905..
Zhang, X. K.; Cai, S. B.; Jian, Z. W.; Yang, X.; Wang, Y. D.; Wang, Z. H.; Lu, X. L.; Xia, H. S. Degradable carbon fiber-reinforced epoxy resin composites based on dynamic benzyl ether bonds.Ind. Eng. Chem. Res.2023,62, 18473−18483..
Li, P. Y.; Ma, S. Q.; Wang, B, B.; Xu, X. W.; Feng, H. Z.; Yu, Z.; Yu, T.; Liu, Y. L.; Zhu, J. Degradable benzyl cyclic acetal epoxy monomers with low viscosity.Compos. Sci. Technol.2022,219, 109143..
Kumar, A.; Sharma, K.; Dixit, A. R. Tensile, flexural and interlaminar shear strength of carbon fiber reinforced epoxy composites modified by graphene.Polym. Bull.2023,80, 7469−7490..
Feng, H. Z.; Xu, X. W.; Wang, B. B.; Su, Y.; Liu, Y. L.; Zhang, C. Z.; Zhu, J.; Ma, S. Q. Facile preparation, closed-loop recycling of multifunctional carbon fiber reinforced polymer composites.Compos. Part B Eng.2023,257, 110677..
Zhao, Z. H.; Wu, J. Q.; Gao, L.; Gong, H. J.; Guo, Z. K.; Zhang, B. Y.; Li, M. H.; Hu, J. Auto-catalytic high-performance recyclable carbon fiber reinforced epoxy.Compos. Part A Appl. Sci. Manuf.2022,162, 107160..
He, M.; Xu, P.; Zhang, Y. J.; Liu, K. S., Yang, X. P. Phthalocyanine nanowires@GO/carbon fiber composites with enhanced interfacial properties and electromagnetic interference shielding performance.Chem. Eng. J.2020,388, 124255..
Xu, P.; Yu, Y. H.; Liu, D. W.; He, M.; Li, G.; Yang, X. P. Enhanced interfacial and mechanical properties of high-modulus carbon fiber composites: Establishing modulus intermediate layer between fiber and matrix based on tailored-modulus epoxy.Compos. Sci. Technol.2018,163, 26−33..
0
Views
588
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution