FOLLOWUS
Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
chm_chenzy@ujn.edu.cn
Published:2024-09,
Published Online:14 November 2024,
Received:28 July 2024,
Revised:15 September 2024,
Accepted:17 September 2024
Scan QR Code
Wang, S. Y.; Xu, X. R.; Qiu, X. X.; Huang, X. L.; Wang, X. Q.; Chen, Z. Y. Fluorinated monodisperse microporous microspheres: formation mechanism, assembly, and molecular separation. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3239-9
Si-Yu Wang, Xin-Rui Xu, Xin-Xin Qiu, et al. Fluorinated Monodisperse Microporous Microspheres: Formation Mechanism, Assembly, and Molecular Separation. [J/OL]. Chinese Journal of Polymer Science, 2024,421-15.
Wang, S. Y.; Xu, X. R.; Qiu, X. X.; Huang, X. L.; Wang, X. Q.; Chen, Z. Y. Fluorinated monodisperse microporous microspheres: formation mechanism, assembly, and molecular separation. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3239-9 DOI:
Si-Yu Wang, Xin-Rui Xu, Xin-Xin Qiu, et al. Fluorinated Monodisperse Microporous Microspheres: Formation Mechanism, Assembly, and Molecular Separation. [J/OL]. Chinese Journal of Polymer Science, 2024,421-15. DOI: 10.1007/s10118-024-3239-9.
The construction of monodisperse microporous organic microspheres is deemed a challenging issue
primarily due to the difficulty in achieving both high microporosity and uniformity within the microspheres. In this study
a series of fluorinated monodisperse microporous microspheres are fabricated by solvothermal precipitation polymerization. The resulting fluorous methacrylate-based microspheres achieved higher than 400 m
2
/g surface area
along with a yield of over 90% for the microspheres. Through comprehensive characte
rization and simulation methods
we discovered that the introduction of fluorous methacrylate monomers at high loading levels is the key factor contributing to the formation of the microporosity within the microspheres. The controlled temperature profile was found to be advantageous for achieving a high yield of microspheres and increased uniformity. Two-dimensional assemblies of these fluorinated microsphere arrays exhibited superhydrophobicity
superolephilicity
and water sliding angles below 10°. Furthermore
a three-dimensional assembly of the fluorinated microporous microsphere in a chromatographic column demonstrated significant improvement in the separation of Engelhardt agent compared to commercial columns. Our work offers a novel approach to constructing fluorinated monodisperse microporous microspheres for advanced applications.
Microporous microspherePrecipitation polymerizationFluorinated microsphereSuperhydrophobicityMolecular separation
Liu, Y. T.; Chen, L. Y.; Yang, L. F.; Lan, T. H.; Wang, H.; Hu, C. H.; Han, X.; Liu, Q. X.; Chen, J. F.; Feng, Z. M.; Cui, X. L.; Fang, Q. R.; Wang, H. L.; Li, L. B.; Li, Y. W.; Xing, H. B.; Yang, S. H.; Zhao, D.; Li, J. P. Porous framework materials for energy&environment relevant applications: a systematic review.Green Energy Environ.2024,9, 217−310..
Slater, A. G.; Cooper, A. I. Function-led design of new porous materials.Science2015,348, aaa8075..
Zhu, J. Y.; Yuan, S. S.; Wang, J.; Zhang, Y. T.; Tian, M. M.; Bart, V. d. B. Microporous organic polymer-based membranes for ultrafast molecular separations.Prog. Polym. Sci.2020,110, 101308..
Cui, Y.; He, X.; Yang, C.; Yan, X. Application of microporous organic networks in separation science.Trends Anal. Chem.2021,139, 116268..
Li, C.; Che, W.; Liu, S. Y.; Liao, G. Hypercrosslinked microporous polystyrene: from synthesis to properties to applications.Mater. Today Chem.2023,29, 101392..
Xing, G. L.; Peng, D. L.; Ben, T. Crystalline porous organic salts.Chem. Soc. Rev.2024,53, 1495−1513..
Khakbaz, M.; Ghaemi, A.; Gity, M. M. S. Synthesis methods of microporous organic polymeric adsorbents: a review.Polym. Chem.2021,12, 6962−6997..
Cui, P.; Song, C. T.; Zhang, X. H.; Chen, D.; Ma, Y. H.; Yang, W. T. Preparation of ultralow molecular weight poly(vinyl chloride) with submicrometer particlesviaprecipitation polymerization.Chinese J. Polym. Sci.2019,37, 646−653..
Song, C. T.; Zhang, X. H.; Chen, D.; Ma, Y. H.; Yang, W. T. Synthetic features and mechanism for the preparation of vinyl chloride-co-butyl acrylate-co-vinyl acetate terpolymerviaprecipitation polymerization.Chinese J. Polym. Sci.2023,41, 1714−1724..
Fontanals,N.; Manesiotis, P.; Sherrington, D. C.; Cormack, P. A. G. Synthesis of spherical ultra-high-surface-area monodisperse amphipathic polymer sponges in the low-micrometer size range.Adv. Mater.2008,20, 1298−1302..
Tang, R. Z.; Zhou, J. H.; Li, X. W.; Yu, Y.; Ma, S. J.; Ou, J. J. Facile "one-pot" preparation of phosphonate functional polythiophene based microsphereviaFriedel-Crafts reaction for selective enrichment of phosphopeptides from milk.Anal. Chim. Acta2022,1190, 339268..
Zhang,Z. X.; Chen, K. X.; Ameduri, B.; Chen, M. Fluoropolymer nanoparticles synthesizedviareversible-deactivation radical polymerizations and their applications.Chem. Rev.2023,123, 12431−12470..
Wang, Y.; Yang, X.; Meng, Y. F.; Wen, Z. X.; Han, R.; Hu, X.; Sun, B.; Kang, F. Y.; Li, B. H.; Zhou, D.; Wang, C. S.; Wang, G. X. Fluorine chemistry in rechargeable batteries: Challenges, progress, and perspectives.Chem. Rev.2024,124, 3494−3589..
Han, S. T.; Gu, Y.; Ma, M. Y.; Chen, M. Light-intensity switch enabled nonsynchronous growth of fluorinated raspberry-like nanoparticles.Chem. Sci.2020,11, 10431−10436..
Quan, Q. Z.; Wen, H. J.; Han, S. T.; Wang, Z. T.; Shao, Z. Z.; Chen, M. Fluorous-core nanoparticle-embedded hydrogel synthesizedviatandem photo-controlled radical polymerization: Facilitating the separation of perfluorinated alkyl substances from water.ACS Appl. Mater. Interfaces2020,12, 24319−24327..
Lu, J. Y.; Zhou, J. H.; Guo, H. Y.; Li, Y. J.; He,X. W.; Chen, L. X.; Zhang, Y. K. Highly fluorinated magnetic covalent organic framework for efficient adsorption and sensitive detection of microcystin toxin in aqueous samples.J. Chromatogr. A2022,1676, 463290..
Peng, J. W.; Geng, H. L.; Xu, F.; Zhang, M.; Ye, P.; Jiang, Y. X.; Wang, H. Y. Endowing versatility and superamphiphobicity to composite coatingviaa bioinspired strategy.Chem. Eng. J.2023,455, 140772..
Hirayama, C.; Ihara, H.; Nagaoka, S.; Hamada, K. Totally organic stationary phase from perfluoroalkyl acrylate for liquid chromatography.J. Chromatogr. A1989,465, 241−248..
Koda, Y.; Terashima, T.; Sawamoto, M. Fluorous microgel star polymers: selective recognition and separation of polyfluorinated surfactants and compounds in water.J. Am. Chem. Soc.2014,136, 15742−15748..
Wang, C.; Shu, H. Y.; Sun, D. C.; Yang, L.; Song, C. T.; Zhang, X. H.; Chen, D.; Ma, Y. H.; Yang, W. T. Synthesis of poly(maleic anhydride-co-vinyl chloride) crosslinked microspheres and its superior enhancement in mechanical strength and antibacterialactivity for poly(vinyl alcohol) composite films.Polymer2024,298, 126918..
Muoz-Bonilla, A.; Bousquet, A.; Ibarboure, E.; Papon, E.; Labrugere, C.; Rodriguez-Hernandez, J. Fabrication and superhydrophobic behavior of fluorinated microspheres.Langmuir2010,26, 16775−16781..
Zhang, D. W.; Liu, J. W.; Liu, T. W.; Yang, X. L. Synthesis of superhydrophobic fluorinated polystyrene microspheresviadistillation precipitation polymerization.Colloid. Polym. Sci.2015,293, 1799−1807..
Wei, W.; Huang, X. B.; Zhao, X. L.; Zhang, P.; Tang, X. Z. A rapid and efficient strategy for preparation of super-hydrophobic surface with cross-linked cyclotriphosphazene/6F-bisphenol a copolymer microspheres.Chem. Commun.2010,46, 487−489..
Ouyang, Y. Q.; Song, L. H.; Zhao, X. D.; Li, Z. H.; Liu, S.; Yan, Z. F. 3D flexible superhydrophobic polyphosphazene coated melamine sponge for oil-water separation.Sep. Purif. Technol. 2023, 306, 122600..
Wei, X.; Zhang, G. C.; Zhou, L. S.; Li, J. W. Synthesis and characterization of hydrophobic amino-based polyphosphazene microspheres with different morphologiesviatwo strategies.Appl. Surf. Sci.2017,419, 744−752..
Zheng, Q.; Liu, J.; Wu, Y. J.; Ji, Y.; Lin, Z. Fluoro-functionalized spherical covalent organic frameworks as a liquid chromatographic stationary phase for the high-resolution separation of organic halides.Anal. Chem.2022,94, 18067−18073..
Sridhar, V.; Yildiz, E.; Rodríguez-Camargo, A.; Lyu, X.; Yao, L.; Wrede, P.; Aghakhani, A.; Akolpoglu, B. M.; Podjaski, F.; Lotsch, B. V.; Sitti, M. Designing covalent organic framework-based light-driven microswimmers toward therapeutic applications.Adv. Mater.2023,35, 2301126..
Sun, X. W.; Wang, R. Y.; Li, L. L.; Wang, X.; Ji, W. H. Online extraction based on ionic covalent organic framework for sensitive determination of trace per- and polyfluorinated alkyl substances in seafoods by UHPLC-MS/MS.Food Chem.2021,362, 130214..
Huang, H. Q.; Ding, Y. Y.; Chen, X. L.; Chen, Z. Y.; Kong, X. Z. Synthesis of monodisperse micron-sized poly(divinylbenzene) microspheres by solvothermal precipitation polymerization.Chem. Eng. J.2016,289, 135−141..
Guo, F. H.; Ding, Y. Y.; Wang, Y. Y.; Gao, X.; Chen, Z. Y. Functional monodisperse microspheres fabricated by solvothermal precipitation co-polymerization.Chinese J. Chem. Eng.2021,34, 323−331..
Duan, Z. Y.; Wang, Y. Y.; Pan, Q. W.; Xie, Y. F.; Chen, Z. Y. Hypercrosslinking polymers fabricated from divinyl benzeneviafriedel-crafts addition polymerization.Chin. J. Polym. Sci.2022,40, 310−320..
Wang, Y. Y.; Bao, L. Q.; Sun, J. J.; Ding, Y. Y.; Shi, J. S.; Duan, Z. Y.; Chen, Z. Y. Superhydrophobic fluorinated microspheres for fluorous affinity chromatography.J. Chromatogr. A2022,1680, 463428..
Xu, R. L., inParticle characterization: Light scattering methods, Kluwer academic publishers, Dordrecht, 2002 , p. 249-250..
Liu, K.; Zhang, S. Y.; Hu, X. Y.; Zhang, K. Y.; Roy, A.; Yu, G. Understanding the adsorption of PFOA on MIL-101(Cr)-based anionic-exchange metal-organic frameworks: comparing DFT calculations with aqueous sorption experiments.Environ. Sci. Technol.2015,49, 8657−8665..
Yang, Y. L.; Wang, J. J.; Liu, R. R.; Quan, K. J.; Chen, J.; Liu, X. H.; Qiu, H. D. Grafting of tetraphenylethylene on silica surface, characterizations, and their chromatographic performance as reversed-phase stationary phases.Langmuir2022,38, 14400−14408..
Sun, H. P.; Yang, Y.; Shen, H. F.; Hao, Q. L.; Huang, Q.; Gao, J.; Liu, X. Y.; Zhang, H. X. Fluorine-functionalized magnetic amino microporous organic network for enrichment of perfluoroalkyl substances.J. Chromatogr. A2024,1722, 464899..
Rabichi, I.; Sekkouri, C.; Yaacoubi, F. E.; Ennaciri, K.; Izghri, Z.; Bouzid, T.; El Fels, L.; Baçaoui, A.; Yaacoubi, A. Experimental and theoretical investigation of olive mill solid waste biochar for vanillic acid adsorption using DFT/B3LYP analysis.Water Air Soil Poll.2024,235, 369..
Medina-Castillo, A. L.; Fernandez-Sanchez, J. F.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Micrometer and submicrometer particles prepared by precipitation polymerization: Thermodynamic model and experimental evidence of the relation between Flory’s parameter and particle size.Macromolecules2010,43, 5804−5813..
Liu, J. X.; Qu, Y. Y.; Yang, K. G.; Wu, Q.; Shan, Y. C.; Zhang, L. H.; Liang, Z.; Zhang, Y. K. Monodisperse boronate polymeric particles synthesized by a precipitation polymerization strategy: particle formation and glycoprotein response from the standpoint of the Flory-Huggins model.ACS Appl. Mater. Interfaces2014,6, 2059−2066..
Brandrup, J.; Immergut, E. H.; Grulke, E. A., inPolymer handbook, fouth ed. Wiley, Hoboken, 1998 , p. 685−688..
Kamiński, M.; Klawiter, J.; Kowalsczyk, J. S. Investigation of the relationship between packing methods and efficiency of preparative columns.J. Chromatogr.1982,243, 225−244..
Engelhardt, H.; Löw, H.; Götzinger, W. Chromatographic characterization of silica-based reversed phases.J. Chromatogr.1991,544, 371−379..
Jiang, D. N.; Chen, J.; Guan, M.; Qiu, H. D. Octadecylimidazolium ionic liquids-functionalized carbon dots and their precursor co-immobilized silica as hydrophobic chromatographic stationary phase with enhanced shape selectivity.Talanta2021,233, 122513..
Li, K.; Stöver, H. D. H. Synthesis of monodisperse poly(divinylbenzene) microspheres.J. Polym. Sci., Part A: Polym. Chem.1993,31, 3257−3263..
Holloway, J. O.; Delafresnaye, L.; Cameron, E. M.; Kammerer, J. A.; Barner-Kowollik, C. Photo-induced synthesis of polymeric nanoparticles and chemiluminescent degradable materialsviaflow chemistry.Mater. Horiz.2024,11, 3115−3126..
Mackiewicz, M.; Dagdelen, S.; Waleka-Bargiel, E.; Karbarz, M. A polyampholyte core-shell microgel as an environmentally sensitive drug carrier.Arab. J. Chem.2024,17, 105464..
Wu, D. Y.; Xu, Q. R.; Nie, Y. R.; Jiang, W. J.; Wang, Z. F.; Jiang, Y. Synergistic fabrication of magnetic hypercrosslinked porous P(VBC-DVB-AA)@Fe3O4microspheres for removal of cationic dye.J. Inorg. Organomet. Polym. Mater.2024,34, 2746−2761..
Yamazaki, S.; Kaneko, N.; Kato, A.; Watanabe, K.; Aoki, D.; Taniguchi, T.; Karatsu, T.; Ueda, Y.; Motokawa, R.; Okura, K.; Wakiya, T. Synthesis of heat-resistant living polymer particles by one-step reversible addition-fragmentation chain transfer precipitation polymerization of styrene andN-phenylmaleimide.Polymer2024,298, 1026846..
Yang, L.; Shu, H. Y.; Wang, C.; Sun, D. C.; Song, C. T.; Zhang, X. H.; Chen, D.; Ma, Y. H.; Yang, W. T. Facile and high-yield synthesis of monodisperse and heat-resistant polymaleimide microspheres by self-stabilized precipitation polymerization.Ind. Eng. Chem. Res.2024,63, 6459−6468..
Guo, F.; Wang, Y.; Chen, M.; Wang, C.; Kuang, S.; Pan, Q.; Ren, D.; Chen, Z. Lotus-root-like supermacroporous cryogels with superphilicity for rapid separation of oil-in-water emulsions.ACS Appl. Polym. Mater.2019,1, 2273−2281..
Zhao, L. X.; Zhang, X.; LÜ, X. X.; Yuan, S. G.; Wu, X. L. Two organic phase suspension polymerization for novel hypercrosslinked resin bead by polycondensation of CMB.Chin. J. Chem. Eng.2013,21, 447−452..
Li, Y. B.; Song, D. Y.; Li, G. F.; Ji, X. F.; Tang, J. T.; Lan, F. J.; Fan, S. L. Applicability analysis of determination models for nanopores in coal using low-pressure CO2and N2adsorption methods.J. Nanosci. Nanotechnol.2021,21, 472−483..
Liu, L.; Tu, H. C.; Liu, F.; Qiao, L. Q.; Wang, X. X.; Lin, J. M.; Wang, M. L.; Wu, Y. N.; Zhao, R. S. Hydroxyl group-enriched microporous organic network for high-performance solid-phase extraction of triazine herbicides: Experiment and DFT calculation on adsorption behavior.Chem. Eng. J.2022,442, 136171..
Yoshimatsu, K.; Reimhult, K.; Krozer, A.; Mosbach, K.; Sode, K.; Ye, L. Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: the control of particle size suitable for different analytical applications.Anal. Chim. Acta2007,584, 112−121..
Zhang, R. D.; Gao, R.; Gou, Q. Q.; Lai, J. J.; Li, X. Y. Precipitation polymerization: a powerful tool for preparation of uniform polymer particles.Polymers2022,14, 1851..
Yan, Q.; Bai, Y. W.; Meng, Z.; Yang, W. T. Precipitation polymerization in acetic acid: Synthesis of monodisperse cross-linked poly(divinylbenzene) microspheres.J. Phys. Chem. B2008,112, 6914−6922..
Downey, J. S.; Frank, R. S.; Li, W.; Stöver, H. D. H. Growth mechanism of poly(divinylbenzene) microspheres in precipitation polymerization.Macromolecules1999,32, 2838−2844..
Fan, H. F.; Guo, Z. G. Bioinspired surfaces with wettability: biomolecule adhesion behaviors.Biomater. Sci.2020,8, 1502−1535..
Parvate, S.; Dixit, P.; Chattopadhyay, S. Superhydrophobic surfaces: insights from theory and experiment.J. Phys. Chem. B2020,124, 1323−1360..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution