FOLLOWUS
School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
chemizuo@zstu.edu.cn
Published:2024-10,
Published Online:14 November 2024,
Received:08 August 2024,
Revised:07 September 2024,
Accepted:23 September 2024
Scan QR Code
Luo, J. T.; Zha, H.; Tian, H. K.; Zuo, B. Physical adsorption and glass transition of thin polystyrene films at a graphene interface. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3241-2
Jin-Tian Luo, Hao Zha, Hou-Kuan Tian, et al. Physical Adsorption and Glass Transition of Thin Polystyrene Films at a Graphene Interface. [J/OL]. Chinese Journal of Polymer Science, 2024,421-7.
Luo, J. T.; Zha, H.; Tian, H. K.; Zuo, B. Physical adsorption and glass transition of thin polystyrene films at a graphene interface. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3241-2 DOI:
Jin-Tian Luo, Hao Zha, Hou-Kuan Tian, et al. Physical Adsorption and Glass Transition of Thin Polystyrene Films at a Graphene Interface. [J/OL]. Chinese Journal of Polymer Science, 2024,421-7. DOI: 10.1007/s10118-024-3241-2.
Polymer adsorption at solid interfaces plays an important role in the dynamics of nanoscale polymer films. We investigated the influence of the interfacial chain adsorption on the glass transition temperature (
T
g
) and dewetting of polystyrene (PS) thin films on a graphene substrate that has strong interaction with PS. We found that the
T
g
s of PS films show a non-monotonic trend with increasing amount of polymer adsorption at the interface—first increasing and then decreasing
and this change in
T
g
is accompanied by a wetting-dewetting transition of the PS films. Film morphological analysis showed that the PS films dewet from the interfacially adsorbed layers rather than from the substrate
i.e
.
autophobic dewetting
indicating the presence of an unfavorable interaction between the adsorbed and free PS chains. We ascribed the repulsive interaction to the formation of a dense adsorbed layer on graphene due to the
π
-
π
interaction between PS and graphene
which prevents the non-adsorbed PS chain fro
m penetrating into the adsorbed layer. This may lead to drops in
T
g
at high adsorption extent.
Polymer adsorptionInterfacial dynamicsGrapheneAutophobic dewettingThin films
Ilton, M.; Salez, T.; Fowler, P. D.; Rivetti, M.; Aly, M.; Benzaquen, M.; McGraw, J. D.; Raphaël, E.; Dalnoki-Veress, K.; Bäumchen, O. Adsorption-induced slip inhibition for polymer melts on ideal substrates.Nat. Commun.2018,9, 1172..
Geoghegan, M. Wetting at polymer surfaces and interfaces.Prog. Polym. Sci.2003,28, 261−302..
Inutsuka, M.; Watanabe, H.; Aoyagi, M.; Yamada, N. L.; Tanaka, C.; Ikehara, T.; Kawaguchi, D.; Yamamoto, S.; Tanaka, K. Effect of oligomer segregation on the aggregation state and strength at the polystyrene/substrate interface.ACS Macro Lett.2022,11, 504−509..
Bitsanis, I. A.; Brinke, G. A Lattice Monte Carlo study of long chain conformations at solid-polymer melt interfaces.J. Chem. Phys.1993,99, 3100−3111..
Schneider, H. M.; Frantz, P.; Granick, S. The bimodal energy landscape when polymers adsorb.Langmuir1996,12, 994−996..
O’Shaughnessy, B.;Vavylonis, D. Irreversibility and polymer adsorption.Phys. Rev. Lett.2003,90, 056103..
Luo, J.; Wang, X.; Tong, B.; Li, Z.; Rocchi, L. A.; Lisio, V. D.; Cangialosi, D.; Zuo, B. Length scale of molecular motions governing glass equilibration in hyperquenched and slow-cooled polystyrene.J. Phys. Chem. Lett.2024,15, 357−363..
Perez-de-Eulate, N. G.; Sferrazza, M.; Cangialosi, D.; Napolitano, S. Irreversible adsorption erases the free surface effect on theTgof supported films of poly(4-tert-butylstyrene).ACS Macro Lett.2017,6, 354−358..
Panagopoulou, A.; Napolitano, S. Irreversible adsorption governs the equilibration of thin polymer films.Phys. Rev. Lett.2017,119, 097801..
Yang, Y.; Tian, H.; Napolitano, S.; Zuo, B. Crystallization in thin films of polymer glasses: the role of free surfaces, solid interfaces and their competition.Prog. Polym. Sci.2023,144, 101725..
Xu, Q.; Zhu, N.; Fang, H.; Wang, X.; Priestley, R. D.; Zuo, B. Decoupling role of film thickness and interfacial effect on polymer thin film dynamics.ACS Macro Lett.2020,10, 1−8..
Randazzo, K.; Bartkiewicz, M.; Graczykowski, B.; Cangialosi, D.; Fytas, G.; Zuo, B.; Priestley, R. D. Direct visualization and characterization of interfacially adsorbed polymer atop nanoparticles and within nanocomposites.Macromolecules2021,54, 10224−10234..
Napolitano, S. Irreversible adsorption of polymer melts and nanoconfinement effects.Soft Matter2020,16, 5348−5365..
Vanroy, B.; Wübbenhorst, M.; Napolitano, S. Crystallization of thin polymer layers confined between two adsorbing walls.ACS Macro Lett.2013,2, 168−172..
Napolitano, S.; Rotella, C.; Wübbenhorst, M. Can thickness and interfacial interactions univocally determine the behavior of polymers confined at the nanoscale.ACS Macro Lett.2012,1, 1189−1193..
Burroughs, M. J.; Napolitano, S.; Cangialosi, D.; Priestley, R. D. Direct measurement of glass transition temperature in exposedand buried adsorbed polymer nanolayers.Macromolecules2016,49, 4647−4655..
Tian, H.; Xu, Q.; Zhang, H.; Priestley, R. D.; Zuo, B. Surface dynamics of glasses.Appl. Phys. Rev.2022,9, 011316..
Braatz, M.-L.; Melendez, L. I.; Sferrazza, M.; Napolitano, S. Unexpected impact of irreversible adsorption on thermal expansion: adsorbed layers are not that dead.J. Chem. Phys.2017,146, 203304..
Tian, H.; Bi, C.; Li, Z.; Wang, C.; Zuo, B. Metastable polymer adsorption dictates the dynamical gradients at interfaces.Macromolecules2023,56, 4346−4353..
Zuo, B.; Zhou, H.; Davis, M. J. B.; Wang, X.; Priestley, R. D. Effect of local chain conformation in adsorbed nanolayers on confined polymer molecular mobility.Phys. Rev. Lett.2019,122, 217801..
Barkley, D. A.; Jiang, N.; Sen, M.; Endoh, M. K.; Rudick, J. G.; Koga, T.; Zhang, Y.; Gang, O.; Yuan, G.; Satija, S. K.; Kawaguchi, D; Tanaka, K.; Karim, A. Chain conformation near the buried interface in nanoparticle-stabilized polymer thin films.Macromolecules2017,50, 7657−7665..
Jiang, N.; Wang, J.; Di, X.; Cheung, J.; Zeng, W.; Endoh, M. K.; Koga, T.; Satija, S. K. Nanoscale adsorbed structures as a robust approach for tailoring polymer film stability.Soft Matter2016,12, 1801−1809..
Wang, T.; Jinsong Yan, J; Hailin Yuan, H; Jianquan Xu, J.;Ho Yi Lam, H. Y.;Xuanji Yu, X.; Chao Lv, C.;Binyang Du, B.; Tsui, O. K. C.Tgconfinement effect of random copolymers of 4-tert-butylstyrene and 4-acetoxystyrene with different compositions.ACS Macro Lett. 2019 ,8, 1280–1284..
Xu, J.; Lv, C.; Du, B.; Wang, X.; Tsui, O. K. C. Effective viscosity of unentangled random copolymer films of styrene and 4-methoxystyrene with different copolymer compositions.Macromolecules2020,53, 7430−7438..
Guiselin, O. Irreversible adsorption of a concentrated polymer solution.Europhys. Lett.1992,17, 225−230..
Gin, P.; Jiang, N.; Liang, C.; Taniguchi, T.; Akgun, B.; Satija, S. K.; Endoh, M. K.; Koga, T. Revealed architectures of adsorbed polymer chains at solid-polymer melt interfaces.Phys. Rev. Lett.2012,109, 265501..
Douglas, J. F.; Schneider, H. M.; Frantz, P.; Lipman, R.; Granick, S. The origin and characterization of conformational heterogeneity in adsorbed polymer layers.J. Phys.: Condens. Matter1997,9, 7699−7718..
Jiang, N.; Shang, J.; Di, X.; Endoh, M. K.; Koga, T. Formation mechanism of high-density, flattened polymer nanolayers adsorbed on planar solids.Macromolecules2014,47, 2682−2689..
Jiang, N.; Endoh, M. K.; Koga, T.; Masui, T.; Kishimoto, H.; Nagao, M.; Satija, S. K.; Taniguchi, T. Nanostructures and dynamics of macromolecules bound to attractive filler surfaces.ACS Macro Lett.2015,4, 838−842..
Simavilla, D. N.; Huang, W.; Vandestrick, P.; Ryckaert, J. P.; Sferrazza, M.; Napolitano, S. Mechanisms of polymer adsorption onto solid substrates.ACS Macro Lett.2017,6, 975−979..
Sen, M; N. Jiang, N.; Cheung, J.; Endoh, M. K.; Koga, T.; Kawaguchi, D.; Tanaka, K. Flattening process of polymer chains irreversibly adsorbed on a solid.ACS Macro Lett.2016,5, 504−508..
Scheutjens, J. M. H. M.; Fleer, G. J. Statistical theory of the adsorption of interacting chain molecules. 2. Train, loop, and tail size distribution.J. Phys. Chem.1980,84, 178−190..
Yang, F.; Presto, D.; Pan, Y.; Liu, K.; Zhou, L.; Narayanan, S.; Zhu, Y.; Peng, Z.; Soucek, M. D.; Tsige, M.; Foster, M. D. Proximity to graphene dramatically alters polymer dynamics.Macromolecules2019,52, 5074−5085..
Hong, Y.; Bao, S.; Xiang, X.; Wang, X. Concentration-dominated orientation of phenyl groups at the polystyrene/graphene interface.ACS Macro Lett.2020,9, 889−894..
Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H. Recent advances in graphene based polymer composites.Prog. Polym. Sci.2010,35, 1350−1375..
Zhang, Z.; Huang, H.; Yang, X.; Zang, L. Tailoring electronic properties of graphene byπ-πstacking with aromatic molecules.J. Phys. Chem. Lett.2011,2, 2897−2905..
Weir, M. P.; Johnson, D. W.; Boothroyd, S. C.; Savage, R. C.; Thompson, R. L.; King, S. M.; Rogers, S. E.; Coleman, K. S.; Clarke, N. Distortion of chain conformation and reduced entanglement in polymer-graphene oxide nanocomposites.ACS Macro Lett.2016,5, 430−434..
Zha, H.; Wang, Q.; Wang, X.; Cangialosi, D.; Zuo, B. Enhanced free surface mobility facilitates the release of free-volume holes in thin-film polymer glasses.Macromolecules2021,54, 2022−2028..
Dalnoki-Veress, K.; Forrest, J. A.; Murray, C.; Gigault, C.; Dutcher, J. R. Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films.Phys. Rev. E2001,63, 031801..
Zhang, Y.; Glor, E. C.; Li, M.; Liu, T.; Wahid, K.; Zhang, W.; Riggleman, R. A.; Fakhraai, Z. Long-range correlated dynamics in ultra-thin molecular glass films.J. Chem. Phys.2016,145, 114502..
Housmans, C.; Sferrazza, M.; Napolitano, S. Kinetics of irreversible chain adsorption.Macromolecules2014,47, 3390−3393..
Rotella, C.; Napolitano, S.; Vandendriessche, S.; Valev, V. K.; Verbiest, T.; Larkowska, M.; Kucharski, S.; Wübbenhorst, M. Adsorption kinetics of ultrathin polymer films in the melt probed by dielectric spectroscopy and second-harmonic generation.Langmuir2011,27, 13533−13538..
Napolitano, S.; Wübbenhorst, M. The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale.Nat. Commun.2011,2, 260..
Zajac, R.; Chakrabarti, A. Irreversible polymer adsorption from semidilute and moderately dense solutions.Phys. Rev. E1995,52, 6536−6549..
Vrij, A. Possible mechanism for the spontaneous rupture of thin, free liquid films.Discuss. Faraday Soc.1966,42, 23−33..
Seemann, R.; Herminghaus, S.; Jacobs, K. Dewetting patterns and molecular forces: a reconciliation.Phys. Rev. Lett.2001,86, 5534−5537..
Zhang, X.; Lee, F. K.; Tsui, O. K. C. Wettability of end-grafted polymer brush by chemically identicalpolymer films.Macromolecules2008,41, 8148−8151..
Shull, K. R. Wetting autophobicity of polymer melts.Faraday Discuss.1994,98, 203−217..
Limary, R.; Green, P. F. Hierarchical pattern formation in thin film diblock copolymers above the order-disorder transition temperature.Macromolecules1999,32, 8167−8172..
Green, P. F.; Ganesan, V. Dewetting of polymeric films: unresolved issues.Eur. Phys. J. E2003,12, 449−454..
Glynos, E.; Frieberg, B.; Green, P. F. Wetting of a multiarm star-shaped molecule.Phys. Rev. Lett.2011,107, 118303..
Glynos, E.; Chremos, A.; Frieberg, B.; Sakellariou, G.; Green, P. F. Wetting of macromolecules: from linear chain to soft colloid-like behavior.Macromolecules 2014 ,47, 1137-1143..
Lee, H.; Sethuraman, V.; Kim, Y.; Lee, W.; Ryu, D. Y.; Ganesan, V. Nonmonotonic glass transition temperature of polymer films supported on polymer brushes.Macromolecules2018,51, 4451−4461..
Ferreira, P. G.; Ajdari, A.; Leibler, L. Scaling law for entropic effects at interfaces between grafted layers and polymer melts.Macromolecules1998,31, 3994−4003..
Lee, H.; Ahn, H.; Naidu, S.; Seong, B. S.; Ryu, D. Y.; Trombly, D. M.; Ganesan, V. Glass transition behavior of PS films on grafted PS substrates.Macromolecules2010,43, 9892−9898..
Clough, A.; Peng, D.; Yang, Z.; Tsui, O. K. C. Glass transition temperature of polymer films that slip.Macromolecules2011,44, 1649−1653..
Hao, Z.; Ghanekarade, A.; Zhu, N.; Randazzo, K.; Kawaguchi, D.; Tanaka, K.; Wang, X.; Simmons, D. S.; Priestley, R. D.; Zuo, B. Mobility gradients yield rubbery surfaces on top of polymer glasses.Nature2021,596, 372−376..
Matsen, M. W.; Gardiner, J. M. Autophobic dewetting of homopolymer on a brush and entropic attraction between opposing brushes in a homopolymer matrix.J. Chem. Phys.2001,115, 2794−2804..
Mansky, P.; Liu, Y.; Huang,E.; Russell, T. P.; Hawker, C. Controlling polymer-surface interactions with random copolymer brushes.Science1997,275, 1458−1460..
Lee, H.; Lee, W.; Han, Y. S; Kim, E.; Ryu, D. Y. Autophobic dewetting of polystyrenes on the substrates grafted with chemically identical polymers.Polym. J.2016,48, 503−507..
Reiter, G.; Khanna, R. Real-time determination of the slippage length in autophobic polymer dewetting.Phys. Rev. Lett.2000,85, 2753−2756..
Yang, Y.; Xing, Z.; Xie, Z.; Wang, X. Polymer Adsorbed layer promotes dipole ordering in gate dielectrics for organic field-effect transistors.J. Phys. Chem. C2021,125, 17271−17279..
Tanaka, K.; Tateishi, Y.; Okada, Y.; Nagamura, T.; Doi, M.; Morita, H. Interfacial mobility of polymers on inorganic solids.J. Phys. Chem. B 2009 ,113, 4571-4577..
Napolitano, S.; Wubbenhorst, M. Dielectric signature of a dead layer in ultrathin films of a nonpolar polymer.J. Phys. Chem. B2007,111, 9197−9199..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution