FOLLOWUS
School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
chemizuo@zstu.edu.cn
Received:08 August 2024,
Revised:07 September 2024,
Accepted:23 September 2024,
Published Online:14 November 2024,
Published:01 July 2025
Scan QR Code
Luo, J. T.; Zha, H.; Tian, H. K.; Zuo, B. Physical adsorption and glass transition of thin polystyrene films at a graphene interface. Chinese J. Polym. Sci. 2025, 43, 1163–1169
Jin-Tian Luo, Hao Zha, Hou-Kuan Tian, et al. Physical Adsorption and Glass Transition of Thin Polystyrene Films at a Graphene Interface[J]. Chinese journal of polymer science, 2025, 43(7): 1163-1169.
Luo, J. T.; Zha, H.; Tian, H. K.; Zuo, B. Physical adsorption and glass transition of thin polystyrene films at a graphene interface. Chinese J. Polym. Sci. 2025, 43, 1163–1169 DOI: 10.1007/s10118-024-3241-2.
Jin-Tian Luo, Hao Zha, Hou-Kuan Tian, et al. Physical Adsorption and Glass Transition of Thin Polystyrene Films at a Graphene Interface[J]. Chinese journal of polymer science, 2025, 43(7): 1163-1169. DOI: 10.1007/s10118-024-3241-2.
This work reveals a new interfacial effect induced by polymer adsorption for tuning the dynamics of polymer thin films. Strong polymer/substrate interaction leads to the formation of an ultra-dense adsorbed layer
atop which the dynamics of thin films could be accelerated
complementing current knowledge that interfacial adsorption retards the dynamics.
Polymer adsorption at solid interfaces plays an important role in the dynamics of nanoscale polymer films. We investigated the influence of the interfacial chain adsorption on the glass transition temperature (
T
g
) and dewetting of polystyrene (PS) thin films on a graphene substrate that has strong interaction with PS. We found that the
T
g
s of PS films show a non-monotonic trend with increasing amount of polymer adsorption at the interface—first increasing and then decreasing
and this change in
T
g
is accompanied by a wetting-dewetting transition of the PS films. Film morphological analysis showed that the PS films dewet from the interfacially adsorbed layers rather than from the substrate
i.e
.
autophobic dewetting
indicating the presence of an unfavorable interaction between the adsorbed and free PS chains. We ascribed the repulsive interaction to the formation of a dense adsorbed layer on graphene due to the
π
-
π
interaction between PS and graphene
which prevents the non-adsorbed PS chain from penetrating into the adsorbed layer. This may lead to drops in
T
g
at high adsorption extent.
Ilton, M.; Salez, T.; Fowler, P. D.; Rivetti, M.; Aly, M.; Benzaquen, M.; McGraw, J. D.; Raphaël, E.; Dalnoki-Veress, K.; Bäumchen, O. Adsorption-induced slip inhibition for polymer melts on ideal substrates. Nat. Commun. 2018 , 9 , 1172..
Geoghegan, M. Wetting at polymer surfaces and interfaces. Prog. Polym. Sci. 2003 , 28 , 261−302..
Inutsuka, M.; Watanabe, H.; Aoyagi, M.; Yamada, N. L.; Tanaka, C.; Ikehara, T.; Kawaguchi, D.; Yamamoto, S.; Tanaka, K. Effect of oligomer segregation on the aggregation state and strength at the polystyrene/substrate interface. ACS Macro Lett. 2022 , 11 , 504−509..
Bitsanis, I. A.; Brinke, G. A Lattice Monte Carlo study of long chain conformations at solid-polymer melt interfaces. J. Chem. Phys. 1993 , 99 , 3100−3111..
Schneider, H. M.; Frantz, P.; Granick, S. The bimodal energy landscape when polymers adsorb. Langmuir 1996 , 12 , 994−996..
O’Shaughnessy, B.;Vavylonis, D. Irreversibility and polymer adsorption. Phys. Rev. Lett. 2003 , 90 , 056103..
Luo, J.; Wang, X.; Tong, B.; Li, Z.; Rocchi, L. A.; Lisio, V. D.; Cangialosi, D.; Zuo, B. Length scale of molecular motions governing glass equilibration in hyperquenched and slow-cooled polystyrene. J. Phys. Chem. Lett. 2024 , 15 , 357−363..
Perez-de-Eulate, N. G.; Sferrazza, M.; Cangialosi, D.; Napolitano, S. Irreversible adsorption erases the free surface effect on the T g of supported films of poly(4- tert -butylstyrene). ACS Macro Lett. 2017 , 6 , 354−358..
Panagopoulou, A.; Napolitano, S. Irreversible adsorption governs the equilibration of thin polymer films. Phys. Rev. Lett. 2017 , 119 , 097801..
Yang, Y.; Tian, H.; Napolitano, S.; Zuo, B. Crystallization in thin films of polymer glasses: the role of free surfaces, solid interfaces and their competition. Prog. Polym. Sci. 2023 , 144 , 101725..
Xu, Q.; Zhu, N.; Fang, H.; Wang, X.; Priestley, R. D.; Zuo, B. Decoupling role of film thickness and interfacial effect on polymer thin film dynamics. ACS Macro Lett. 2020 , 10 , 1−8..
Randazzo, K.; Bartkiewicz, M.; Graczykowski, B.; Cangialosi, D.; Fytas, G.; Zuo, B.; Priestley, R. D. Direct visualization and characterization of interfacially adsorbed polymer atop nanoparticles and within nanocomposites. Macromolecules 2021 , 54 , 10224−10234..
Napolitano, S. Irreversible adsorption of polymer melts and nanoconfinement effects. Soft Matter 2020 , 16 , 5348−5365..
Vanroy, B.; Wübbenhorst, M.; Napolitano, S. Crystallization of thin polymer layers confined between two adsorbing walls. ACS Macro Lett. 2013 , 2 , 168−172..
Napolitano, S.; Rotella, C.; Wübbenhorst, M. Can thickness and interfacial interactions univocally determine the behavior of polymers co nfined at the nanoscale. ACS Macro Lett. 2012 , 1 , 1189−1193..
Burroughs, M. J.; Napolitano, S.; Cangialosi, D.; Priestley, R. D. Direct measurement of glass transition temperature in exposed and buried adsorbed polymer nanolayers. Macromolecules 2016 , 49 , 4647−4655..
Tian, H.; Xu, Q.; Zhang, H.; Priestley, R. D.; Zuo, B. Surface dynamics of glasses. Appl. Phys. Rev. 2022 , 9 , 011316..
Braatz, M.-L.; Melendez, L. I.; Sferrazza, M.; Napolitano, S. Unexpected impact of irreversible adsorption on thermal expansion: adsorbed layers are not that dead. J. Chem. Phys. 2017 , 146 , 203304..
Tian, H.; Bi, C.; Li, Z.; Wang, C.; Zuo, B. Metastable polymer adsorption dictates the dynamical gradients at interfaces. Macromolecules 2023 , 56 , 4346−4353..
Zuo, B.; Zhou, H.; Davis, M. J. B.; Wang, X.; Priestley, R. D. Effect of local chain conformation in adsorbed nanolayers on confined polymer molecular mobility. Phys. Rev. Lett. 2019 , 122 , 21780 1..
Barkley, D. A.; Jiang, N.; Sen, M.; Endoh, M. K.; Rudick, J. G.; Koga, T.; Zhang, Y.; Gang, O.; Yuan, G.; Satija, S. K.; Kawaguchi, D; Tanaka, K.; Karim, A. Chain conformation near the buried interface in nanoparticle-stabilized polymer thin films. Macromolecules 2017 , 50 , 7657−7665..
Jiang, N.; Wang, J.; Di, X.; Cheung, J.; Zeng, W.; Endoh, M. K.; Koga, T.; Satija, S. K. Nanoscale adsorbed structures as a robust approach for tailoring polymer film stability. Soft Matter 2016 , 12 , 1801−1809..
Wang, T.; Jinsong Yan, J; Hailin Yuan, H; Jianquan Xu, J.;Ho Yi Lam, H. Y.;Xuanji Yu, X.; Chao Lv, C.;Binyang Du, B.; Tsui, O. K. C. T g confinement effect of random copolymers of 4- tert -butylstyrene and 4-acetoxystyrene with different compositions. ACS Macro Lett . 2019 , 8 , 1280–1284..
Xu, J.; Lv, C.; Du, B.; Wang, X.; Tsui, O. K. C. Effective viscosity of unentangled random copolymer films of styrene and 4-methoxystyrene with different copolymer compositions. Macromolecules 2020 , 53 , 7430−7438..
Guiselin, O. Irreversible adsorption of a concentrated polymer solution. Europhys. Lett. 1992 , 17 , 225−230..
Gin, P.; Jiang, N.; Liang, C.; Taniguchi, T.; Akgun, B.; Satija, S. K.; Endoh, M. K.; Koga, T. Revealed architectures of adsorbed polymer chains at solid-polymer melt interfaces. Phys. Rev. Lett. 2012 , 109 , 265501..
Douglas, J. F.; Schneider, H. M.; Frantz, P.; Lipman, R.; Granick, S. The origin and characterization of conformational heterogeneity in adsorbed polymer layers. J. Phys.: Condens. Matter 1997 , 9 , 7699−7718..
Jiang, N.; Shang, J.; Di, X.; Endoh, M. K.; Koga, T. Formation mechanism of high-density, flattened polymer nanolayers adsorbed on planar solids. Macromolecules 2014 , 47 , 2682−2689..
Jiang, N.; Endoh, M. K.; Koga, T.; Masui, T.; Kishimoto, H.; Nagao, M.; Satija, S. K.; Taniguchi, T. Nanostructures and dynamics of macromolecules bound to attractive filler surfaces. ACS Macro Lett. 2015 , 4 , 838−842..
Simavilla, D. N.; Huang, W.; Vandestrick, P.; Ryckaert, J. P.; Sferrazza, M.; Napolitano, S. Mechanisms of polymer adsorption onto solid substrates. ACS Macro Lett. 2017 , 6 , 975−979..
Sen, M; N. Jiang, N.; Cheung, J.; Endoh, M. K.; Koga, T.; Kawaguchi, D.; Tanaka, K. Flattening process of polymer chains irreversibly adsorbed on a solid. ACS Macro Lett. 2016 , 5 , 504−508..
Scheutjens, J. M. H. M.; Fleer, G. J. Statistical theory of the adsorption of interacting chain molecules. 2. Train, loop, and tail size distribution. J. Phys. Chem. 1980 , 84 , 178−190..
Yang, F.; Presto, D.; Pan, Y.; Liu, K.; Zhou, L.; Narayanan, S.; Zhu, Y.; Peng, Z.; Soucek, M. D.; Tsige, M.; Foster, M. D. Proximity to graphene dramatically alters polymer dynamics. Macromolecules 2019 , 52 , 5074−5085..
Hong, Y.; Bao, S.; Xiang, X.; Wang, X. Concentration-dominated orientation of phenyl groups at the polystyrene/graphene interface. ACS Macro Lett. 2020 , 9 , 889−894..
Kuilla, T .; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010 , 35 , 1350−1375..
Zhang, Z.; Huang, H.; Yang, X.; Zang, L. Tailoring electronic properties of graphene by π - π stacking with aromatic molecules. J. Phys. Chem. Lett. 2011 , 2 , 2897−2905..
Weir, M. P.; Johnson, D. W.; Boothroyd, S. C.; Savage, R. C.; Thompson, R. L.; King, S. M.; Rogers, S. E.; Coleman, K. S.; Clarke, N. Distortion of chain conformation and reduced entanglement in polymer-graphene oxide nanocomposites. ACS Macro Lett. 2016 , 5 , 430−434..
Zha, H.; Wang, Q.; Wang, X.; Cangialosi, D.; Zuo, B. Enhanced free surface mobility facilitates the release of free-volume holes in thin-film polymer glasses. Macromolecules 2021 , 54 , 2022−2028..
Dalnoki-Veress, K.; Forrest, J. A.; Murray, C.; Gigault, C.; Dutcher, J. R. Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films. Phys. Rev. E 2001 , 63 , 031801..
Zhang, Y.; Glor, E. C.; Li, M.; Liu, T.; Wahid, K.; Zhang, W.; Riggleman, R. A.; Fakhraai, Z. Long-range correlated dynamics in ultra-thin molecular glass films. J. Chem. Phys. 2016 , 145 , 114502..
Housmans, C.; Sferrazza, M.; Napolitano, S. Kinetics of irreversible chain adsorption. Macromolecules 2014 , 47 , 3390−3393..
Rotella, C.; Napolitano, S.; Vandendriessche, S.; Valev, V. K.; Verbiest, T.; Larkowska, M.; Kucharski, S.; Wübbenhorst, M. Adsorption kinetics of ultrathin polymer films in the melt probed by dielectric spectroscopy and second-harmonic generation. Langmuir 2011 , 27 , 13533−13538..
Napolitano, S.; Wübbenhorst, M. The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat. Commun. 2011 , 2 , 260..
Zajac, R.; Chakrabarti, A. Irreversible polymer adsorption from semidilute and moderately dense solutions. Phys. Rev. E 1995 , 52 , 6536−6549..
Vrij, A. Possible mecha nism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 1966 , 42 , 23−33..
Seemann, R.; Herminghaus, S.; Jacobs, K. Dewetting patterns and molecular forces: a reconciliation. Phys. Rev. Lett. 2001 , 86 , 5534−5537..
Zhang, X.; Lee, F. K.; Tsui, O. K. C. Wettability of end-grafted polymer brush by chemically identicalpolymer films. Macromolecules 2008 , 41 , 8148−8151..
Shull, K. R. Wetting autophobicity of polymer melts. Faraday Discuss. 1994 , 98 , 203−217..
Limary, R.; Green, P. F. Hierarchical pattern formation in thin film diblock copolymers above the order-disorder transition temperature. Macromolecules 1999 , 32 , 8167−8172..
Green, P. F.; Ganesan, V. Dewetting of polymeric films: unresolved issues. Eur. Phys. J. E 2003 , 12 , 449−454..
Glynos, E.; Frieberg, B.; Green, P. F. Wetting of a multiarm star-shaped molecule. Phys. Rev. Lett. 2011 , 107 , 118303..
Glynos, E.; Chremos, A.; Frieberg, B.; Sakellariou, G.; Green, P. F. Wetting of macromolecules: from linear chain to soft colloid-like behavior. Macromolecules 2014 , 4 7, 1137-1143..
Lee, H.; Sethuraman, V.; Kim, Y.; Lee, W.; Ryu, D. Y.; Ganesan, V. Nonmonotonic glass transition temperature of polymer films supported on polymer brushes. Macromolecules 2018 , 51 , 4451−4461..
Ferreira, P. G.; Ajdari, A.; Leibler, L. Scaling law for entropic effects at interfaces between grafted layers and polymer melts. Macromolecules 1998 , 31 , 3994−4003..
Lee, H.; Ahn, H.; Naidu, S.; Seong, B. S.; Ryu, D. Y.; Trombly, D. M.; Ganesan, V. Glass transition behavior of PS films on grafted PS substrates. Macromolecules 2010 , 43 , 9892−9898..
Clough, A.; Peng, D.; Yang, Z.; Tsui, O. K. C. Glass transition temperature of polymer film s that slip. Macromolecules 2011 , 44 , 1649−1653..
Hao, Z.; Ghanekarade, A.; Zhu, N.; Randazzo, K.; Kawaguchi, D.; Tanaka, K.; Wang, X.; Simmons, D. S.; Priestley, R. D.; Zuo, B. Mobility gradients yield rubbery surfaces on top of polymer glasses. Nature 2021 , 596 , 372−376..
Matsen, M. W.; Gardiner, J. M. Autophobic dewetting of homopolymer on a brush and entropic attraction between opposing brushes in a homopolymer matrix. J. Chem. Phys. 2001 , 115 , 2794−2804..
Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C. Controlling polymer-surface interactions with random copolymer brushes. Science 1997 , 275 , 1458−1460..
Lee, H.; Lee, W.; Han, Y. S; Kim, E.; Ryu, D. Y. Autophobic dewetting of polystyrenes on the substrates grafted with chemically identical polymers. Polym. J. 2016 , 48 , 503−507..
Reiter, G.; Khanna, R. Real-time determination of the slippage length in autophobic polymer dewetting. Phys. Rev. Lett. 2000 , 85 , 2753 −2756..
Yang, Y.; Xing, Z.; Xie, Z.; Wang, X. Polymer Adsorbed layer promotes dipole ordering in gate dielectrics for organic field-effect transistors. J. Phys. Chem. C 2021 , 125 , 17271−17279..
Tanaka, K.; Tateishi, Y.; Okada, Y.; Nagamura, T.; Doi, M.; Morita, H. Interfacial mobility of polymers on inorganic solids. J. Phys. Chem. B 2009 , 113 , 4571-4577..
Napolitano, S.; Wubbenhorst, M. Dielectric signature of a dead layer in ultrathin films of a nonpolar polymer. J. Phys. Chem. B 2007 , 111 , 9197−9199..
0
Views
146
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution