FOLLOWUS
National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
bbchang@zzu.edu.cn
Published:2024-10,
Published Online:14 November 2024,
Received:14 August 2024,
Revised:19 September 2024,
Accepted:25 September 2024
Scan QR Code
Huang, K.; Mo, J. J.; Shi, W. J.; Wang, S. T.; Shi, H. H.; Shao, C. G.; Liu, C. T.; Chang, B. B. Role of stretching-induced crystallization on mesoscale morphology transition of UHMWPE during hot stretching. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3242-1
Kai Huang, Jia-Jia Mo, Wen-Jing Shi, et al. Role of Stretching-induced Crystallization on Mesoscale Morphology Transition of UHMWPE during Hot Stretching. [J/OL]. Chinese Journal of Polymer Science, 2024,421-11.
Huang, K.; Mo, J. J.; Shi, W. J.; Wang, S. T.; Shi, H. H.; Shao, C. G.; Liu, C. T.; Chang, B. B. Role of stretching-induced crystallization on mesoscale morphology transition of UHMWPE during hot stretching. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3242-1 DOI:
Kai Huang, Jia-Jia Mo, Wen-Jing Shi, et al. Role of Stretching-induced Crystallization on Mesoscale Morphology Transition of UHMWPE during Hot Stretching. [J/OL]. Chinese Journal of Polymer Science, 2024,421-11. DOI: 10.1007/s10118-024-3242-1.
In this work
a morphology transition mode is revealed in ultra-high molecular weight polyethylene (UHMWPE) when stretching at 120 °C: moving from the slightly deformed region to the necked region
the morphology transfers from small spherulites to a mixture of transcrystalline and enlarged spherulites
and finally to pure transcrystalline; meanwhile
the lamellae making up the transcrystalline or spherulite were fragmented into smaller ones; spatial scan by wide-angle X-ray scattering (WAXS) and small angle X-ray scattering (SAXS) revealed that the crystallinity is increased from 25.3% to 30.1% and the crystal orientation was enhanced greatly
but the lamellae orientation was quite weak. The rise of enlarged spherulites or a mixture of transcrystalline and spherulites can also be found in UHMWPE stretched at 140 and 148 °C
whereas absent in UHMWPE stretched at 30 °C.
In situ
WAXS/SAXS measurements suggest that during stretching at 30 °C
the crystallinity is reduced drastically
and a few voids are formed as the size increases from 50 nm to 210 nm; during stretching at 120 °C
the crystallinity is reduced only slightly
and the kinking of lamellae occurs at large Hencky strain; during stretching at 140 and 148 °C
an increase in crystallinity with stretching strain can be found
and the lamellae are also kinked. Taking the microstructure and morphology transition into consideration
a mesoscale morphology transition mode is proposed
in the stretching-induced crystallization the fragmented lamellae can be rearranged into new supra-structures such as spherulite or transcrystalline during hot stretching.
UHMWPEStretching induced crystallizationLamellae fragmentationMesoscale structural transition
Kurtz, S. M., 1 - A Primer on UHMWPE. InUHMWPE Biomaterials Handbook (Third Edition), Kurtz, S. M., Ed. William Andrew Publishing: Oxford, 2016 ; pp. 1−6..
Kim, T.; Drakopoulos, S. X.; Ronca, S.; Minnich, A. J. Origin of high thermal conductivity in disentangled ultra-high molecular weight polyethylene films: ballistic phonons within enlarged crystals.Nat. Commun.2022,13, 2452..
Zhu, B.; Liu, J.; Wang, T.; Han, M.; Valloppilly, S.; Xu, S.; Wang, X. Novel polyethylene fibers of very high thermal conductivity enabled by amorphous restructuring.ACS Omega2017,2, 3931−3944..
Park, J. H.; Rutledge, G. C. 50thAnniversary perspective: advanced polymer fibers: high performance and ultrafine.Macromolecules2017,50, 5627−5642..
Gote, R. P.; Romano, D.; van der Eem, J.; Zhao, J.; Zhou, F.; Rastogi, S. Unprecedented mechanical properties in linear UHMWPE using a heterogeneous catalytic system.Macromolecules2023,56, 361−378..
Christakopoulos, F.; Troisi, E. M.; Sologubenko, A. S.; Friederichs, N.; Stricker, L.; Tervoort, T. A. Melting kinetics, ultra-drawability and microstructure of nascent ultra-high molecular weight polyethylene powder.Polymer2021,222, 123633..
Galeski, A.; Bartczak, Z.; Vozniak, A.; Pawlak, A.; Walkenhorst, R. Morphology and plastic yielding of ultrahigh molecular weight polyethylene.Macromolecules2020,53, 6063−6077..
Litvinov, V. M.; Xu, J.; Melian, C.; Demco, D. E.; Möller, M.; Simmelink, J. Morphology, chain dynamics, and domain sizes in highly drawn gel-spun ultrahigh molecular weight polyethylene fibers at the final stages of drawing by SAXS, WAXS, and 1H Solid-State NMR.Macromolecules2011,44, 9254−9266..
Balzano, L.; Coussens, B.; Engels, T.; Oosterlinck, F.; Vlasblom, M.; van der Werff, H.; Lellinger, D. Multiscale structure and microscopic deformation mechanisms of gel-spun ultrahigh-molecular-weight polyethylene fibers.Macromolecules2019,52, 5207−5216..
Zhong, Y.; Chen, L.; Gao, J.; Guo, J.; Xing, C.; Li, Y.; Wang, Z. Structural evolution of high-entanglement ultrahigh molecular weight polyethylene films with reserved shish crystals during the hot stretching process.Macromolecules2024,57, 2176−2190..
Yao, Y.; Jiang, S.; Rastogi, S. 13C solid state NMR characterization of structure and orientation development in the narrow and broad molar mass disentangled UHMWPE.Macromolecules2014,47, 1371−1382..
Petrov, A.; Rudyak, V. Y.; Chertovich, A. Optimal entanglement of polymers promotes the formation of highly oriented fibers.Macromolecules2022,55, 6493−6504..
Lv, F.; Chen, X.; Wan, C.; Su, F.; Ji, Y.; Lin, Y.; Li, X.; Li, L. Deformation of ultrahigh molecular weight polyethylene precursor fiber: crystal slip with or without melting.Macromolecules2017,50, 6385−6395..
Christakopoulos, F.; Bersenev, E.; Grigorian, S.; Brem, A.; Ivanov, D. A.; Tervoort, T. A.; Litvinov, V. Melting-induced evolution of morphology, entanglement density, and ultradrawability of solution-crystallized ultrahigh-molecular-weight polyethylene.Macromolecules2021,54, 5683−5693..
Wu, H.; Liao, T.; Zhu, B.; Su, W.; Lu, Y.; Men, Y. Reversed thermal stability between stress-induced melting and recrystallized crystallites and original inclined ones in moderately stretched ultra high molecular weight polyethylene and high density polyethylene.Polymer2023,270, 125799..
Xue, J.; Lu, Y.; Wang, B.; Chen, J.; Shen, C.; Zhang, B. The isothermal melting kinetics of ultra-high molecular weight polyethylene crystals.Macromolecular Rapid Communications2024,45, 2300704..
Bartczak, Z.; Vozniak, A. Deformation instabilities and cavitation in plastic deformation of semicrystalline polyethylene.Macromolecules2024,57, 6474−6491..
Wu, H.; Liao, T.; Zhu, B.; Su, W.; Lu, Y.; Men, Y. Temperature dependent large strain cavitation in ultra high molecular weight polyethylene during tensile deformation.Polymer2023,285, 126365..
Bowden, P. B.; Young, R. J. Deformation mechanisms in crystalline polymers.J Mater. Sci.1974,9, 2034−2051..
Hiss, R.; Hobeika, S.; Lynn, C.; Strobl, G. Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study.Macromolecules1999,32, 4390−4403..
Rozanski, A.; Galeski, A. Controlling cavitation of semicrystalline polymers during tensile drawing.Macromolecules2011,44, 7273−7287..
Bartczak, Z.; Vozniak, A. WAXS/SAXS study of plastic deformation instabilities and lamellae fragmentation in polyethylene.Polymer2019,177, 160−177..
Peterlin, A. Molecular mechanism of plastic deformation of polyethylene.J. Polym. Sci., Part C: Polym. Symp.1967,18, 123−132..
Deng, B.; Chen, L.; Zhong, Y.; Li, X.; Wang, Z. The effect of temperature on the structural evolution of ultra-high molecular weight polyethylene films with pre-reserved shish crystals during the stretching process.Polymer2023,267, 125690..
Chen, P. Z.; Zhao, H. Y.; Xia, Z. J.; Zhang, Q. L.; Wang, D. L.; Meng, L. P.; Chen, W. Structural evolution of LLDPE-LMW/HMW blend during uniaxial deformation as revealed byin situsynchrotron radiation X-ray scattering.Chinese J. Polym. Sci.2021,39, 102−112..
Zhong, T.; Zhong, Z. Y.; Huang, J. W.; Sun, T.; Fezzaa, K.; Huang, J. Y.; Luo, S. N. Rate-dependent phase transition of high density polyethylene.Materialia2019,6, 100274..
Aulov, V.; Shcherbina, M.; Chvalun, S.; Makarov, S.; Kuchkina, I.; Pantyukhin, A.; Bakeev, N.; Pavlov, Y. Monoclinic phase in reactor powders of ultra-high-molecular-weight polyethylene and its changes during compaction and monolithization.Polym. Sci. Ser. A2004,46, 620−626..
Ma, Z.; Fernandez-Ballester, L.; Cavallo, D.; Gough, T.; Peters, G. W. M. High-stress shear-induced crystallization in isotactic polypropylene and propylene/ethylene random copolymers.Macromolecules2013,46, 2671−2680..
Chang, B.; Schneider, K.; Vogel, R.; Heinrich, G. Influence of nucleating agent self-assembly on structural evolution of isotactic polypropylene during uniaxial stretching.Polymer2018,138, 329−342..
Xia, Z.; Zhao, H.; Li, Y.; Ma, Y. M.; Tian, F.; Chen, W. Stress-induced crystallization of the metastableβ-form of poly((R)-3-hydroxybutyrate-co-4-hydroxybutyrate).ACS Appl. Polym. Mater.2021,3, 4109−4117..
Thünemann, A. F.; Ruland, W. Microvoids in polyacrylonitrile fibers: a small-angle X-ray scattering study.Macromolecules2000,33, 1848−1852..
Tian, Y.; Zhu, C.; Gong, J.; Ma, J.; Xu, J. Transition from shish-kebab to fibrillar crystals during ultra-high hot stretching of ultra-high molecular weight polyethylene fibers:In situsmall and wide angle X-ray scattering studies.Eur. Polym. J.2015,73, 127−136..
Grubb, D. T.; Kennedy, W. J.; Koerner, H.; Murthy, N. S. Simulation of SAXS patterns from oriented lamellar structures and their elliptical trajectories.Polymer2021,220, 123566..
Takazawa, A.; Kakiage, M.; Yamanobe, T.; Uehara, H.; Shimizu, Y.; Ohnishi, T.; Wakabayashi, Y.; Inatomi, K.; Abe, S.; Aoyama, K. Effect of blending small amount of high-density polyethylene on molecular entanglements during melt-drawing of ultrahigh-molecular-weight polyethylene.Polymer2022,241, 124528..
Murthy, N. S.; Grubb, D. T. Tilted lamellae in an affinely deformed 3D macrolattice and elliptical features in small-angle scattering.J. Polym. Sci., Part B: Polym. Phys.2006,44, 1277−1286..
Takahashi, Y.; Ishida, T.; Furusaka, M. Monoclinic-to-orthorhombic transformation in polyethylene.J. Polym. Sci., Part B: Polym. Phys.1988,26, 2267−2277..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution