1.School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
shiyi6@mail.sysu.edu.cn
Scan for full text
Jia-Sheng Wu, Wang-Meng Hou, Zhi-Jia Liu, et al. Mainchain Semifluorinated Polymers with Ultra High Molecular Weight
Jia-Sheng Wu, Wang-Meng Hou, Zhi-Jia Liu, et al. Mainchain Semifluorinated Polymers with Ultra High Molecular Weight
A rapid and highly efficient step-growth polymerization with reaction-enhanced reactivity of intermediate (RERI) mechanism based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction was developed to achieve the (ultra)high-molecular-weight mainchain semifluorinated polymers with diverse chemical compositions under a stoichiometric imbalance condition.
Achieving the linear polymers with high molecular weight,via,step-growth polymerization of A,2,and B,2,monomers is significantly limited by the requirement of strict stoichiometry of two monomers when the reactivity of A and B groups are not changed during the polymerization. Herein, a unique step-growth polymerization based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) with reaction-enhanced reactivity of intermediate (RERI) mechanism was developed for the preparation of mainchain semifluorinated polymers with high molecular weight. The CuAAC polymerization of bis-alkynyl-terminated fluorinated monomers (A,2,) and 2,2-bis(azidomethyl)propane-1,3-diyl bis(2-methylpropanoate) (BiAz, B,2,) with RERI effect at different stoichiometric ratio was systematically investigated. The results indicated that the semifluorinated polymers with ultrahigh molecular weight,M,w,MALLS,>,10,6,g/mol, could be efficiently synthesized by using excess molar of BiAz monomers. The resultant high-molecular-weight semifluorinated polymers show good thermostability and high hydrophobicity. In addition, the glass transition temperature (,T,g,) of these mainchain semifluorinated polymers could be tuned conveniently due to the bis-alkynyl-terminated comonomers could be consumed completely when excessive BiAz monomers were used in this this step-growth polymerization.
Semifluorinated polymersClick polymerizationStep-growth polymerization
Ma, M.; Shao, F.; Wen, P.; Chen, K.; Li, J.; Zhou, Y.; Liu, Y.; Jia, M.; Chen, M.; Lin, X.Designing weakly solvating solid main-chain fluoropolymer electrolytes: synergistically enhancing stability toward Li anodes and high-voltage cathodes.ACS Energy Lett.,2021,64255-4264.DOI:10.1021/acsenergylett.1c02036http://doi.org/10.1021/acsenergylett.1c02036.
Jia, M.; Wen, P.; Wang, Z.; Zhao, Y.; Liu, Y.; Lin, J.; Chen, M.; Lin, X.Fluorinated bifunctional solid polymer electrolyte synthesized under visible light for stable lithium deposition and dendrite-free all-solid-state batteries.Adv. Funct. Mater.,2021,312101736DOI:10.1002/adfm.202101736http://doi.org/10.1002/adfm.202101736.
Wang, R.; Yang, S.; Xiao, P.; Sun, Y.; Li, J.; Jiang, X.; Wu, W.Fluorination and betaine modification augment the blood-brain barrier-crossing ability of cylindrical polymer brushes.Angew. Chem. Int. Ed.,2022,61e202201390.
Stein, H. L. Ultrahigh molecular weight polyethylene (UHMWPE), inEngineered Materials Handbook; ASM International: Materials Park, OH,1999; Vol. 2, pp 167−171.
Discekici, E. H.; Anastasaki, A.; Kaminker, R.; Willenbacher, J.; Truong, N. P.; Fleischmann, C.; Oschmann, B.; Lunn, D. J.; Read de Alaniz, J.; Davis, T. P.; Bates, C. M.; Hawker, C. J.Light-mediated atom transfer radical polymerization of semi-fluorinated (meth)acrylates: facile access to functional materials.J. Am. Chem. Soc.,2017,1395939-5945.DOI:10.1021/jacs.7b01694http://doi.org/10.1021/jacs.7b01694.
Gong, H.; Zhao, Y.; Shen, X.; Lin, J.; Chen, M.Organocatalyzed photocontrolled radical polymerization of semifluorinated (meth)acrylates driven by visible light.Angew. Chem. Int. Ed.,2018,57333-337.DOI:10.1002/anie.201711053http://doi.org/10.1002/anie.201711053.
Gong, H.; Gu, Y.; Zhao, Y.; Quan, Q.; Han, S.; Chen, M.Precise synthesis of ultra-high-molecular-weight fluoropolymers enabled by chain-transfer-agent differentiation under visible-light irradiation.Angew. Chem. Int. Ed.,2020,59919-927.DOI:10.1002/anie.201912698http://doi.org/10.1002/anie.201912698.
Zhao, Y.; Ma, M.; Lin, X.; Chen, M.Photoorganocatalyzed divergent reversible-deactivation radical polymerization towards linear and branched fluoropolymers.Angew. Chem. Int. Ed.,2020,5921470-21474.DOI:10.1002/anie.202009475http://doi.org/10.1002/anie.202009475.
Jiang, K.; Han, S.; Ma, M.; Zhang, L.; Zhao, Y.; Chen, M.Photoorganocatalyzed reversible-deactivation alternating copolymerization of chlorotrifluoroethylene and vinyl ethers under ambient conditions: facile access to main-chain fluorinated copolymers.J. Am. Chem. Soc.,2020,1427108-7115.DOI:10.1021/jacs.0c01016http://doi.org/10.1021/jacs.0c01016.
Quan, Q.; Ma, M.; Wang, Z.; Gu, Y.; Chen, M.Visible-light-enabled organocatalyzed controlled alternating terpolymerization of perfluorinated vinyl ethers.Angew. Chem. Int. Ed.,2021,6020443-20451.DOI:10.1002/anie.202107066http://doi.org/10.1002/anie.202107066.
Daglar, O.; Cakmakci, E.; Gunay, U.S.; Hizal, G.; Tunca, U.; Durmaz, H. A straightforward method for fluorinated polythioether synthesis.Macromolecules,2020,532965-2975.DOI:10.1021/acs.macromol.0c00548http://doi.org/10.1021/acs.macromol.0c00548.
Wang, X.; Hong, M.Precise control of molecular weight and stereospecificity in Lewis pair polymerization of semifluorinated methacrylates: mechanistic studies and stereocomplex formation.Macromolecules,2020,534659-4669.DOI:10.1021/acs.macromol.0c00553http://doi.org/10.1021/acs.macromol.0c00553.
Gong, H.; Zhang, Y.; Cheng, Y.; Lei, M.; Zhang, Z.The application of controlled/living radical polymerization in modification of PVDF-based fluoropolymer.Chinese J. Polym. Sci.,2021,391110-1126.DOI:10.1007/s10118-021-2616-xhttp://doi.org/10.1007/s10118-021-2616-x.
Carmean, R. N.; Becker, T. E.; Sims, M. B.; Sumerlin, B. S.Ultra-high molecular weightsviaaqueous reversible-deactivation radical polymerization.Chem,2017,293-101.DOI:10.1016/j.chempr.2016.12.007http://doi.org/10.1016/j.chempr.2016.12.007.
Bai, Y.; He, J.; Zhang, Y.Ultra-high-molecular-weight polymers produced by the immortal phosphine-based catalyst system.Angew. Chem. Int. Ed.,2018,5717230-17234.DOI:10.1002/anie.201811946http://doi.org/10.1002/anie.201811946.
Liu, Z.; Lv, Y.; An, Z.Enzymatic cascade catalysis for the synthesis of multiblock and ultrahigh-molecular-weight polymers with oxygen tolerance.Angew. Chem. Int. Ed.,2017,5613852-13856.DOI:10.1002/anie.201707993http://doi.org/10.1002/anie.201707993.
Li, R.; An, Z.Achieving ultrahigh molecular weights with diverse architectures for unconjugated monomers through oxygen-tolerant photoenzymatic RAFT polymerization.Angew. Chem. Int. Ed.,2020,5922258-22264.DOI:10.1002/anie.202010722http://doi.org/10.1002/anie.202010722.
Carmean, R. N.; Sims, M. B.; Figg, C. A.; Hurst, P. J.; Patterson, J. P.; Sumerlin, B. S.Ultrahigh molecular weight hydrophobic acrylic and styrenic polymers through organic-phase photoiniferter-mediated polymerization.ACS Macro Lett.,2020,9613-618.DOI:10.1021/acsmacrolett.0c00203http://doi.org/10.1021/acsmacrolett.0c00203.
Kihara, N.; Komatsu, S.I.; Takata, T.; Endo, T. Significance of stoichiometric imbalance in step polymerizationviareactive intermediate.Macromolecules,1999,324776-4783.DOI:10.1021/ma981835lhttp://doi.org/10.1021/ma981835l.
Dutta, T.; Woody, K. B.; Watson, M. D.Transition-metal-free synthesis of poly(phenylene ethynylene)s with alternating aryl-perfluoroaryl units.J. Am. Chem. Soc.,2008,130452-453.DOI:10.1021/ja710564bhttp://doi.org/10.1021/ja710564b.
Goto, E.; Ando, S.; Ueda, M.; Higashihara, T.Nonstoichiometric stille coupling polycondensation for synthesizing naphthalene-diimide-basedπ-conjugated polymers.ACS Macro Lett.,2015,41004-1007.DOI:10.1021/acsmacrolett.5b00532http://doi.org/10.1021/acsmacrolett.5b00532.
Zou, L.; Cao, X.; Zhang, Q.; Dodds, M.; Guo, R.; Gao, H.Friedel-crafts A2+B4polycondensation toward regioselective linear polymer with rigid triphenylmethane backbone and its property as gas separation membrane.Macromolecules,2018,516580-6586.DOI:10.1021/acs.macromol.8b01394http://doi.org/10.1021/acs.macromol.8b01394.
Lindner, J. P.Imidazolium-based polymersviathe poly-Radziszewski reaction.Macromolecules,2016,492046-2053.DOI:10.1021/acs.macromol.5b02417http://doi.org/10.1021/acs.macromol.5b02417.
Zhang, L.; Ren, X.; Zhang, Y.; Zhang, K.Step-growth polymerization method for ultrahigh molecular weight polymers.ACS Macro Lett.,2019,8948-954.DOI:10.1021/acsmacrolett.9b00475http://doi.org/10.1021/acsmacrolett.9b00475.
Chen, J.Q.; Xiang, L.; Liu, X.; Liu, X.; Zhang, K. Self-accelerating click reaction in step polymerization.Macromolecules,2017,505790-5797.DOI:10.1021/acs.macromol.7b01173http://doi.org/10.1021/acs.macromol.7b01173.
Miyatake, K.; Hlil, A. R.; Hay, A. S.High Molecular weight aromatic polyformals free of macrocyclic oligomers. A condensative chain polymerization reaction.Macromolecules,2001,344288-4290.DOI:10.1021/ma002020rhttp://doi.org/10.1021/ma002020r.
Olvera, L. I.; Zolotukhin, M. G.; Hernández-Cruz, O.; Fomine, S.; Cárdenas, J.; Gaviño-Ramírez, R. L.; Ruiz-Trevino, F. A.Linear, single-strand heteroaromatic polymers from superacid-catalyzed step-growth polymerization of ketones with bisphenols.ACS Macro Lett.,2015,4492-494.DOI:10.1021/acsmacrolett.5b00164http://doi.org/10.1021/acsmacrolett.5b00164.
Xiang, L.; Li, Z.; Liu, J.A.; Chen, J.; Zhang, M.; Wu, Y.; Zhang, K. Periodic Polymers Based on a Self-accelerating Click Reaction.Polym. Chem.,2018,94036-4043.DOI:10.1039/C8PY00645Hhttp://doi.org/10.1039/C8PY00645H.
Liu, X.; Xiang, L.; Li, J.; Wu, Y.; Zhang, K.Stoichiometric imbalance-promoted step-growth polymerization based on self-accelerating 1,3-dipolar cycloaddition click reactions.Polym. Chem.,2020,11125-134.DOI:10.1039/C9PY01362Hhttp://doi.org/10.1039/C9PY01362H.
Cruz, A. R.; Hernandez, M. C. G.; Guzmán-Gutiérrez, M. T.; Zolotukhin, M. G.; Fomine, S.; Morales, S. L.; Kricheldorf, H.; Wilks, E.S.; Cárdenas, J.; Salmón, M. Precision synthesis of narrow polydispersity, ultrahigh molecular weight linear aromatic polymers by A2+ B2nonstoichiometric step-selective polymerization.Macromolecules,2012,456774-6780.DOI:10.1021/ma301691fhttp://doi.org/10.1021/ma301691f.
Guzmán-Gutiérrez, M. T.; Nieto, D. R.; Fomine, S.; Morales, S. L.; Zolotukhin, M. G.; Hernandez, M. C. G.; Kricheldorf, H.; Wilks, E. S.Dramatic enhancement of superacid-catalyzed polyhydroxyalkylation reactions.Macromolecules,2011,44194-202.DOI:10.1021/ma102267fhttp://doi.org/10.1021/ma102267f.
Kolb, H. C.; Finn, M. G.; Sharpless, K. B.Click chemistry: diverse chemical function from a few good reactions.Angew. Chem. Int. Ed.,2001,402004-2021.DOI:10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5http://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5.
Shi, Y.; Chen, Y.; Liang, Y.; Andrews, J.; Dong, H.; Yuan, M.; Ding, W.; Banerjee, S.; Ardebili, H.; Robertson, M. L.; Cui, X.; Yao, Y.Chemically inert covalently networked triazole-based solid polymer electrolytes for stable all-solid-state lithium batteries.J. Mater.Chem. A,2019,719691-19695.DOI:10.1039/C9TA05885Khttp://doi.org/10.1039/C9TA05885K.
Shi, Y.; Zhu, W.; Yao, D.; Long, M.; Peng, B.; Zhang, K.; Chen, Y.Disk-like Micelles with a highly ordered pattern from molecular bottlebrushes.ACS Macro Lett.,2014,370-73.DOI:10.1021/mz400619ghttp://doi.org/10.1021/mz400619g.
Sun, H.; Haque, F. M.; Zhang, Y.; Commisso, A.; Mohamed, M. A.; Tsianou, M.; Cui, H.; Grayson, S. M.; Cheng, C.Linear-dendritic alternating copolymers.Angew. Chem. Int. Ed.,2019,5810572-10576.DOI:10.1002/anie.201903402http://doi.org/10.1002/anie.201903402.
Xu, L.; Zhang, Q.; Lu, L.; Shi, Y.; Liu, L.; Shen, J.; Chen, Y.Unimolecular nano-contrast agent with ultrahigh relaxivity and very long retention for magnetic resonance lymphography.Nano Lett.,2022,224090-4096.DOI:10.1021/acs.nanolett.2c00796http://doi.org/10.1021/acs.nanolett.2c00796.
Zhang, M.; Wu, J.; Li, Z.; Hou, W.; Li, Y.; Shi, Y.; Chen, Y.Synthesis and visualization of bottlebrush-shaped segmented hyperbranched polymers.Polym. Chem.,2022,134895-4900.DOI:10.1039/D2PY00898Jhttp://doi.org/10.1039/D2PY00898J.
Shi, Y.; Cao, X.; Gao, H.The use of azide-alkyne click chemistry in recent syntheses and applications of polytriazole-based nanostructured polymers.Nanoscale,2016,84864-4881.DOI:10.1039/C5NR09122Ehttp://doi.org/10.1039/C5NR09122E.
Huang, D.; Liu, Y.; Qin, A.; Tang, B. Z.Recent advances in alkyne-based click polymerizations.Polym. Chem.,2018,92853-2867.DOI:10.1039/C7PY02047Chttp://doi.org/10.1039/C7PY02047C.
Li, B.; Huang, D.; Qin, A.; Tang, B. Z.Progress on catalytic systems used in click polymerization.Macromol. Rapid Commun.,2018,391800098DOI:10.1002/marc.201800098http://doi.org/10.1002/marc.201800098.
Huang, Z.; Zhou, Y.; Wang, Z.; Li, Y.; Zhang, W.; Zhou, N.; Zhang, Z.; Zhu, X. L.Recent advances of CuAAC click reaction in building cyclic polymer.Chinese J. Polym. Sci.,2017,35317-341.DOI:10.1007/s10118-017-1902-0http://doi.org/10.1007/s10118-017-1902-0.
Li, H.; Sun, J.; Qin, A.; Tang, B. Z.Azide-alkyne click polymerization: an update.Chinese J. Polym. Sci.,2012,301-15.DOI:10.1007/s10118-012-1098-2http://doi.org/10.1007/s10118-012-1098-2.
Rodionov, V. O.; Fokin, V. V.; Finn, M. G.Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction.Angew. Chem. Int. Ed.,2005,442210-2215.DOI:10.1002/anie.200461496http://doi.org/10.1002/anie.200461496.
Rodionov, V. O.; Presolski, S. I.; Díaz Díaz, D.; Fokin, V. V.; Finn, M. G.Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report.J. Am. Chem. Soc.,2007,12912705-12712.DOI:10.1021/ja072679dhttp://doi.org/10.1021/ja072679d.
Cao, X.; Shi, Y.; Gao, H.A novel chain-growth CuAAC polymerization: one-pot synthesis of dendritic hyperbranched polymers with well-defined structures.Synlett,2017,28391-396.
Shi, Y.; Graff, R.W.; Cao, X.; Wang, X.; Gao, H. Chain-growth click polymerization of AB2monomers for the formation of hyperbranched polymers with low polydispersities in a one-pot process.Angew. Chem. Int. Ed.,2015,547631-7635.DOI:10.1002/anie.201502578http://doi.org/10.1002/anie.201502578.
Shi, Y.; Cao, X.; Hu, D.; Gao, H.Highly branched polymers with layered structures that mimic light-harvesting processes.Angew. Chem. Int. Ed.,2018,57516-520.DOI:10.1002/anie.201709492http://doi.org/10.1002/anie.201709492.
Cao, X.; Shi, Y.; Wang, X.; Graff, R. W.; Gao, H.Design a highly reactive trifunctional core molecule to obtain hyperbranched polymers with over a million molecular weight in one-pot click polymerization.Macromolecules,2016,49760-766.DOI:10.1021/acs.macromol.5b02678http://doi.org/10.1021/acs.macromol.5b02678.
Shi, Y.; Cao, X.; Luo, S.; Wang, X.; Graff, R.W.; Hu, D.; Guo, R.; Gao, H. Investigate the glass transition temperature of hyperbranched copolymers with segmented monomer sequence.Macromolecules,2016,494416-4422.DOI:10.1021/acs.macromol.6b01144http://doi.org/10.1021/acs.macromol.6b01144.
Gan, W.; Shi, Y.; Jing, B.; Cao, X.; Zhu, Y.; Gao, H.Produce molecular brushes with ultrahigh grafting density using accelerated CuAAC grafting-onto strategy.Macromolecules,2017,50215-222.DOI:10.1021/acs.macromol.6b02388http://doi.org/10.1021/acs.macromol.6b02388.
Shi, Y.; Wang, X.; Graff, R. W.; Phillip, W. A.; Gao, H.Synthesis of degradable molecular brushes via a combination of ring-opening polymerization and click chemistry.J. Polym. Sci., Part A: Polym. Chem.,2015,53239-248.
Xu, J.; Prifti, F.; Song, J.A versatile monomer for preparing well-defined functional polycarbonates and poly(ester-carbonates).Macromolecules,2011,442660-2667.DOI:10.1021/ma200021mhttp://doi.org/10.1021/ma200021m.
0
Views
15
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution