a.Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
b.Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
c.School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
d.No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
e.Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
zxf7515@xtu.edu.cn (X.F.Z.)
ztang@ciac.ac.cn (Z.H.T.)
Scan for full text
Zhi-Lin Liu, Xi-Tong Ren, Yue Huang, et al. A Novel CA4P Polymeric Nanoparticle for Murine Hepatoma Therapy. [J]. Chinese Journal of Polymer Science 41(8):1223-1229(2023)
Zhi-Lin Liu, Xi-Tong Ren, Yue Huang, et al. A Novel CA4P Polymeric Nanoparticle for Murine Hepatoma Therapy. [J]. Chinese Journal of Polymer Science 41(8):1223-1229(2023) DOI: 10.1007/s10118-023-2921-7.
Combretastatin A4 phosphate (CA4P) is a potent vascular disrupting agent with good water solubility. However, it is only effective at high doses, which decreases clinical applicability. Herein, we designed stable CA4P polymeric nanoparticles (CA4P NPs) consisting of various cholesterol derivatives, and with a drug loading efficacy of 93%. The nanoparticles released CA4P in a sustained manner and achieved a 72% inhibition rate in the murine H22 liver tumor model, which was about 2.9-fold higher than that of free CA4P (24.6%). Furthermore, the carrier components of CA4P NPs were metabolized to arginine, cholesterol, ethanol and poly(ethylene glycol) ,in vivo,; therefore, the CA4P NPs are safe and have significant potential for clinical translation.
CA4P polymeric nanoparticleCholesterol derivativesVascular disrupting agentPhosphate-guanidine coordinationDrug controlled release
Askoxylakis,V.;Arvanitis,C.D.;Wong,C.S.F.;Ferraro,G.B.;Jain,R.K.Emergingstrategiesfordeliveringantiangiogenictherapiestoprimaryandmetastaticbraintumors.Adv. Drug Deliv. Rev.2017,119,159−174..
Li,Z.;Di,C.;Li,S.;Yang,X.;Nie,G.Smartnanotherapeutictargetingoftumorvasculature.Acc. Chem. Res.2019,52,2703−2712..
Yamakawa,D.;Kidoya,H.;Sakimoto,S.;Jia,W.;Takakura,N.2-MethoxycinnamaldehydeinhibitstumorangiogenesisbysuppressingTie2activation.Biochem. Biophys. Res. Commun.2011,415,174−80..
Hong,S.;Zheng,D.W.;Zhang,C.;Huang,Q.X.;Cheng,S.X.;Zhang,X.Z.Vasculardisruptingagentinducedaggregationofgoldnanoparticlesforphotothermallyenhancedtumorvasculardisruption.Sci. Adv.2020,6,eabb0020..
Smolarczyk,R.;Czapla,J.;Jarosz-Biej,M.;Czerwinski,K.;Cichon,T.Vasculardisruptingagentsincancertherapy.Eur. J. Pharmacol.2021,891,173692..
DaeiFarshchiAdli,A.;Jahanban-Esfahlan,R.;Seidi,K.;Samandari-Rad,S.;Zarghami,N.AnoverviewonVadimezan(DMXAA):thevasculardisruptingagent.Chem. Biol. Drug Design2018,91,996−1006..
Liu,Z.;Yu,H.;Shen,N.;Tang,Z.;Chen,X.AROS-stimulus-responsivenanocarrierloadingwithguanidine-modifiedhydroxycamptothecinprodrugforenhancedanti-tumorefficacy.CCS Chem.2020,2,305−316..
Liu,Z.L.;Ma,S.;Sun,J.L.;Si,X.H.;Tang,Z.H.;Chen,X.S.Reactiveoxygenspeciesresponsivecore-shellnanoparticlesincreasetumorenrichmentandendocytosis.Acta Polymerica Sinica(inChinese)2020,51,1153−1159..
Liu,Z.;Tang,Z.;Zhang,D.;Wu,J.;Si,X.;Shen,N.;Chen,X.AnovelGSHresponsivepoly(alpha-lipoicacid)nanocarrierbondingwiththehonokiol-DMXAAconjugateforcombinationtherapy.Sci. China Mater.2019,63,307−315..
Dong,S.;Ma,S.;Liu,Z.L.;Ma,L.L.;Zhang,Y.;Tang,Z.H.;Deng,M.X.;Song,W.T.Functionalamphiphilicpoly(2-oxazoline)blockcopolymersasdrugcarriers:therelationshipbetweenstructureanddrugloadingcapacity.Chinese J. Polym. Sci.2021,39,865−873..
Wang,T.;Wu,C.;Wang,C.;Zhang,G.;Arnst,K.E.;Yao,Y.;Zhang,Z.;Wang,Y.;Pu,D.;Li,W.UnravelingthemolecularmechanismofBNC105,aphaseIIclinicaltrialvasculardisruptingagent,providesinsightsintodrugdesign.Biochem. Biophys. Res. Commun2020..
Liu,Z.;Zhang,Y.;Shen,N.;Sun,J.;Tang,Z.;Chen,X.DestructionoftumorvasculaturebyvasculardisruptingagentsinovercomingthelimitationofEPReffect.Adv. Drug Deliv. Rev.2022,183,114138..
Sherbet,G.V.Suppressionofangiogenesisandtumourprogressionbycombretastatinandderivatives.Cancer Lett.2017,403,289−295..
Galbraith,S.M.;Chaplin,D.J.;Lee,F.;Stratford,M.R.L.;Locke,R.J.;Vojnovic,B.;Tozer,G.M.EffectsofcombretastatinA4phosphateonendothelialcellmorphologyin vitroandrelationshiptotumourvasculartargetingactivityin vivo.Anticancer Res.2001,21,93−102..
Hasani,A.;Leighl,N.Classificationandtoxicitiesofvasculardisruptingagents.Clinical Lung Cancer2011,12,18−25..
Dong,M.;Liu,F.;Zhou,H.;Zhai,S.;Yan,B.NovelNaturalproduct-andprivilegedscaffold-basedtubulininhibitorstargetingthecolchicinebindingsite.Molecules2016,21,1375..
An,Y.;Chen,C.;Zhu,J.D.;Dwivedi,P.;Zhao,Y.J.;Wang,Z.Hypoxia-inducedactivitylossofaphoto-responsivemicrotubuleinhibitorazobenzenecombretastatinA4.Front. Chem. Sci. Eng.2020,14,880−888..
Winn,B.A.;Devkota,L.;Kuch,B.;MacDonough,M.T.;Strecker,T.E.;Wang,Y.;Shi,Z.;Gerberich,J.L.;Mondal,D.;Ramirez,A.J.;Hamel,E.;Chaplin,D.J.;Davis,P.;Mason,R.P.;Trawick,M.L.;Pinney,K.G.BioreductivelyactivatableprodrugconjugatesofcombretastatinA-1andcombretastatinA-4asanticanceragentstargetedtowardtumor-associatedhypoxia.J. Nat. Prod.2020,83,937−954..
Welford,A.F.;Biziato,D.;Coffelt,S.B.;Nucera,S.;Fisher,M.;Pucci,F.;DiSerio,C.;Naldini,L.;DePalma,M.;Tozer,G.M.;Lewis,C.E.TIE2-expressingmacrophageslimitthetherapeuticefficacyofthevascular-disruptingagentcombretastatinA4phosphateinmice.J. Clin. Invest.2011,121,1969−73..
Jaroch,K.;Karolak,M.;Gorski,P.;Jaroch,A.;Krajewski,A.;Ilnicka,A.;Sloderbach,A.;Stefanski,T.;Sobiak,S.Combretastatins:in vitrostructure-activityrelationship,modeofactionandcurrentclinicalstatus.Pharmacol. Rep.2016,68,1266−1275..
Liu,Y.;Wang,S.;Zhao,X.;Feng,Y.;Bormans,G.;Swinnen,J.;Oyen,R.;Huang,G.;Ni,Y.;Li,Y.Predictingclinicalefficacyofvasculardisruptingagentsinrodentmodelsofprimaryandsecondarylivercancers:anoverviewwithimaging-histopathologycorrelation.Diagnostics2020,10,78..
Hinnen,P.;Eskens,F.A.Vasculardisruptingagentsinclinicaldevelopment.Br. J. Cancer2007,96,1159−1165..
Gao,M.;Zhang,D.;Yao,N.;Jin,Q.;Jiang,C.;Zhang,J.;Wang,F.Enhancingintratumoralbiodistributionandantitumoractivityofnab-paclitaxelthroughcombinationwithavasculardisruptingagent,combretastatinA-4-phosphate.Cancer Chemoth. Pharmacol.2019,84,1187−1194..
Brown,A.W.;Holmes,T.;Fisher,M.;Tozer,G.M.;Harrity,J.P.A.;Kanthou,C.Evaluationofsydnone-basedanaloguesofcombretastatinA-4phosphate(CA4P)asvasculardisruptingagentsforuseincancertherapy.Chem. Med. Chem.2018,13,2618−2626..
Liu,T.Z.;Zhang,D.W.;Song,W.T.;Tang,Z.H.;Zhu,J.M.;Ma,Z.M.;Wang,X.D.;Chen,X.S.;Tong,T.Apoly(L-glutamicacid)-combretastatinA4conjugateforsolidtumortherapy:Markedlyimprovedtherapeuticefficiencythroughitslowtissuepenetrationinsolidtumor.Acta Biomaterialia2017,53,179−189..
Folkman,J.Roleofangiogenesisintumorgrowthandmetastasis.Semin. Oncol.2002,29,15−8..
Liu,Z.L.;Shen,N.;Tang,Z.H.;Zhang,D.W.;Ma,L.L.;Yang,C.G.;Chen,X.S.AneximiousandaffordableGSHstimulus-responsivepoly(alpha-lipoicacid)nanocarrierbondingcombretastatinA4fortumortherapy.Biomater. Sci-Uk.2019,7,2803−2811..
Deng,C.;Zhao,J.;Zhou,S.;Dong,J.;Cao,J.;Gao,J.;Bai,Y.;Deng,H.ThevasculardisruptingagentCA4PimprovestheantitumorefficacyofCAR-Tcellsinpreclinicalmodelsofsolidhumantumors.Mol. Ther.2020,28,75−88..
Thebault,C.J.;Ramniceanu,G.;Boumati,S.;Michel,A.;Seguin,J.;Larrat,B.;Mignet,N.;Menager,C.;Doan,B.T.TheranosticMRIliposomesformagnetictargetingandultrasoundtriggeredreleaseoftheantivascularCA4P.J. Control. Rel.: Official J. Control. Rel. Soc.2020,322,137−148..
Satterlee,A.B.;Rojas,J.D.;Dayton,P.A.;Huang,L.Enhancingnanoparticleaccumulationandretentionindesmoplastictumorsviavasculardisruptionforinternalradiationtherapy.Theranostics2017,7,253−269..
0
Views
16
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution