Shi-Lu Ji, Hua-Min Lan, Sen-Sen Zhou, et al. Ir(III)-based Ratiometric Hypoxic Probe for Cell Imaging. [J]. Chinese Journal of Polymer Science 41(5):794-801(2023)
DOI:
Shi-Lu Ji, Hua-Min Lan, Sen-Sen Zhou, et al. Ir(III)-based Ratiometric Hypoxic Probe for Cell Imaging. [J]. Chinese Journal of Polymer Science 41(5):794-801(2023) DOI: 10.1007/s10118-023-2922-6.
Ir(III)-based Ratiometric Hypoxic Probe for Cell Imaging
Two new ratiometric hypoxia probes (Ir-C343 and Ir-GFP) are synthesized, and a ratiometric response is realized that is only related to oxygen concentration. Ir-GFP shows promising applications in the ratiometric hypoxia imaging of cells due to its long excitation wavelength, good water solubility, high biocompatibility, and low relative fluorescence intensity compared with the phosphorescent emitter Ir-fliq.
Abstract
Two new ratiometric hypoxia probes (Ir-C343 and Ir-GFP) are synthesized by covalently incorporating florescent internal standard molecules coumarin 343 (C343) and green fluorescent protein (GFP) into bis[1-(9,9-dimethyl-9,H,-fluoren-2-yl)-isoquinoline] (succinylacetone) Ir(III) (Ir-fliq), respectively. After connecting with internal standard molecules, the Ir-fliq moiety still exhibits high sensitivity to oxygen concentration, while the fluorescence intensity of the internal standard remains relatively constant under different oxygen concentrations. As a result, a ratiometric response is realized that is only related to oxygen concentration. In addition, Ir-GFP shows more promising applications in the ratiometric hypoxia imaging of cells due to its long excitation wavelength, good water solubility, high biocompatibility, and low relative fluorescence intensity compared with the phosphorescent emitter Ir-fliq.
Rudin, M.; Weissleder, R.Molecular imaging in drug discovery and development.Nat. Rev. Drug Discov.,2003,2123-131.DOI:10.1038/nrd1007http://doi.org/10.1038/nrd1007.
Weissleder, R.Molecular imaging in cancer.Science,2006,3121168-1171.DOI:10.1126/science.1125949http://doi.org/10.1126/science.1125949.
Lee, Y. E. K.; Kopelman, R.Optical nanoparticle sensors for quantitative intracellular imaging.Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol.,2009,198-110.DOI:10.1002/wnan.2http://doi.org/10.1002/wnan.2.
Li, Q.; Liu, L.; Liu, J. W.; Jiang, J. H.; Yu, R. Q.; Chu, X.Nanomaterial-based fluorescent probes for live-cell imaging.Trac-Trends Anal. Chem.,2014,58130-144.DOI:10.1016/j.trac.2014.03.007http://doi.org/10.1016/j.trac.2014.03.007.
Smith, B. R.; Gambhir, S. S.Nanomaterials forin vivoImaging.Chem. Rev.,2017,117901-986.DOI:10.1021/acs.chemrev.6b00073http://doi.org/10.1021/acs.chemrev.6b00073.
Koo, H.; Huh, M. S.; Ryu, J. H.; Lee, D. E.; Sun, I. C.; Choi, K.; Kim, K.; Kwon, I. C.Nanoprobes for biomedical imaging in living systems.Nano Today,2011,6204-220.DOI:10.1016/j.nantod.2011.02.007http://doi.org/10.1016/j.nantod.2011.02.007.
Wolfbeis, O. S.An overview of nanoparticles commonly used in fluorescent bioimaging.Chem. Soc. Rev.,2015,444743-68.DOI:10.1039/C4CS00392Fhttp://doi.org/10.1039/C4CS00392F.
Kang, S. Y.; Wang, Y.; Xu, X. C.; Navarro, E.; Tichauer, K. M.; Liu, J. T. C.Microscopic investigation of topically applied nanoparticles for molecular imaging of fresh tissue surfaces.J. Biophoton.,2018,11e201700246DOI:10.1002/jbio.201700246http://doi.org/10.1002/jbio.201700246.
Leigh, S. Y.; Som, M.; Liu, J. T. C.Method for assessing the reliability of molecular diagnostics based on multiplexed SERS-coded nanoparticles.PLoS One,2013,88DOI:10.1371/journal.pone.0062084http://doi.org/10.1371/journal.pone.0062084.
Wang, Y.; Reder, N. P.; Kang, S.; Glaser, A. K.; Yang, Q.; Wall, M. A.; Javid, S. H.; Dintzis, S. M.; Liu, J. T. C.Raman-encoded molecular imaging with topically applied SERS nanoparticles for intraoperative guidance of lumpectomy.Cancer Res.,2017,774506-4516.DOI:10.1158/0008-5472.can-17-0709http://doi.org/10.1158/0008-5472.can-17-0709.
Wang, Y. W.; Doerksen, J. D.; Kang, S. Y.; Walsh, D.; Yang, Q.; Hong, D.; Liu, J. T. C.Multiplexed molecular imaging of fresh tissue surfaces enabled by convection-enhanced topical staining with SERS-coded nanoparticles.Small,2016,125612-5621.DOI:10.1002/smll.201601829http://doi.org/10.1002/smll.201601829.
Papkovsky, D. B.; Dmitriev, R. I.Biological detection by optical oxygen sensing.Chem. Soc. Rev.,2013,428700-8732.DOI:10.1039/c3cs60131ehttp://doi.org/10.1039/c3cs60131e.
Tichauer, K. M.; Holt, R. W.; El-Ghussein, F.; Davis, S. C.; Samkoe, K. S.; Gunn, J. R.; Leblond, F.; Pogue, B. W.Dual-tracer background subtraction approach for fluorescent molecular tomography.J. Biomed. Opt.,2013,1811DOI:10.1117/1.jbo.18.1.016003http://doi.org/10.1117/1.jbo.18.1.016003.
Tichauer, K. M.; Wang, Y.; Pogue, B. W.; Liu, J. T. C.Quantitativein vivocell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging.Phys. Med. Biol.,2015,60R239-R269.DOI:10.1088/0031-9155/60/14/R239http://doi.org/10.1088/0031-9155/60/14/R239.
Haidekker, M. A.; Theodorakis, E. A.Ratiometric mechanosensitive fluorescent dyes: design and applications.J. Mater. Chem. C,2016,42707-2718.DOI:10.1039/C5TC03504Jhttp://doi.org/10.1039/C5TC03504J.
Kumar, S.; Verma, T.; Mukherjee, R.; Ariese, F.; Somasundaram, K.; Umapathy, S.Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis.Chem. Soc. Rev.,2016,451879-1900.DOI:10.1039/C5CS00540Jhttp://doi.org/10.1039/C5CS00540J.
Liu, J. T. C.; Helms, M. W.; Mandella, M. J.; Crawford, J. M.; Kino, G. S.; Contag, C. H.Quantifying cell-surface biomarker expression in thick tissues with ratiometric three-dimensional microscopy.Biophys. J.,2009,962405-2414.DOI:10.1016/j.bpj.2008.12.3908http://doi.org/10.1016/j.bpj.2008.12.3908.
Liu, X.; Yu, Z.; Yu, M.; Zhang, X.; Xu, Y.; Lv, P.; Chu, S.; Liu, C.; Lai, W.; Huang, W.Iridium(III)-complexed polydendrimers for inkjet-printing OLEDs: the influence of solubilizing steric hindrance groups.ACS Appl. Mater. Interfaces,2019,1126174-26184.DOI:10.1021/acsami.9b07238http://doi.org/10.1021/acsami.9b07238.
Jiang, Y.; Lv, P.; Pan, J.; Li, Y.; Lin, H.; Zhang, X.; Wang, J.; Liu, Y.; Wei, Q.; Xing, G.; Lai, W.; Huang, W.Low-threshold organic semiconductor lasers with the aid of phosphorescent Ir(III) complexes as triplet sensitizers.Adv. Funct. Mater.,2019,291806719DOI:10.1002/adfm.201806719http://doi.org/10.1002/adfm.201806719.
Liu, J.; Zhou, H.; Wang, Z.; Tang, X.; Wu, H.; Wang, S.; Lai, W.; Li, Y.Distinct Ir(III) complexes containing unsymmetric ligands with fluorene-oxadiazole groups and their performance of organic light-emitting diodes.Dyes and Pigments,2022,202110252DOI:10.1016/j.dyepig.2022.110252http://doi.org/10.1016/j.dyepig.2022.110252.
Zhang L.; Ding D.Recent advances of transition Ir(III) complexes as photosensitizers for improved photodynamic therapy.VIEW,2020,220200179.
Ji, S.; Zhou, S.; Zhang, X.; Chen, W.; Jiang, X.An oxygen-sensitive probe and a hydrogel for optical imaging and photodynamic antimicrobial chemotherapy of chronic wounds.Biomater. Sci.,2022,102054-2061.DOI:10.1039/D2BM00153Ehttp://doi.org/10.1039/D2BM00153E.
Yoshihara, T.; Yamaguchi, Y.; Hosaka, M.; Takeuchi, T.; Tobita, S.Ratiometric molecular sensor for monitoring oxygen levels in living cells.Angew. Chem. Int. Ed.,2012,514148-51.DOI:10.1002/anie.201107557http://doi.org/10.1002/anie.201107557.
Rodrigues, M.; Kosaric, N.; Bonham, C. A.; Gurtner, G. C.Wound healing: a cellular perspective.Physiol. Rev.,2019,99665-706.DOI:10.1152/physrev.00067.2017http://doi.org/10.1152/physrev.00067.2017.
Cooke, J. P.Inflammation and its role in regeneration and repair.Circ. Res.,2019,1241166-1168.DOI:10.1161/CIRCRESAHA.118.314669http://doi.org/10.1161/CIRCRESAHA.118.314669.
Rodrigues, M.; Gurtner, G. C.Black, white, and gray: macrophages in skin repair and disease.Curr. Pathobiol. Rep.,2017,5333-342.DOI:10.1007/s40139-017-0152-8http://doi.org/10.1007/s40139-017-0152-8.
Facile Synthesis of Functional Poly(methyltriazolylcarboxylate)s by Solvent- and Catalyst-free Butynoate-Azide Polycycloaddition
Controllable Emission via Tuning the Size of Fluorescent Nano-probes Formed by Polymeric Amphiphiles
Tetraphenylethene End-capped Polyethylenimine Fluorescent Nanoparticles for Cell Imaging
Facile Fabrication of Aggregation-induced Emission Based Red Fluorescent Organic Nanoparticles for Cell Imaging
Related Author
No data
Related Institution
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
Department of Urology, The First Affiliated Hospital of Soochow University
Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon
College of Chemistry, Chemical Engineering and Materials Science, Soochow University
Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center