a.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
b.Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
ZhuMF@dhu.edu.cn
Scan for full text
Zhi-Yuan Ma, Dan-Ya Li, Xin Jia, et al. Recent Advances in Bio-Inspired Versatile Polydopamine Platforms for “Smart” Cancer Photothermal Therapy. [J]. Chinese Journal of Polymer Science 41(5):699-712(2023)
Zhi-Yuan Ma, Dan-Ya Li, Xin Jia, et al. Recent Advances in Bio-Inspired Versatile Polydopamine Platforms for “Smart” Cancer Photothermal Therapy. [J]. Chinese Journal of Polymer Science 41(5):699-712(2023) DOI: 10.1007/s10118-023-2926-2.
Taking advantage of the surface modification strategy of mussel-inspired dopamine chemistry and its excellent photothermal conversion effect, polydopamine (Pdop) represents a versatile photothermal therapy platform, providing strategies and methods for the construction of novel Pdop-functionalized photothermal conversion materials.
Although photothermal therapy (PTT) has been developed for fighting cancers, the degradative, toxic, and metabolic nature of photothermal conversion materials (PCMs) has prevented them from being clinically implemented. Taking advantage of the surface modification strategy of mussel-inspired dopamine chemistry and its excellent photothermal conversion effect, polydopamine (Pdop) represents a versatile PTT platform, providing strategies and methods for the construction of novel Pdop-functionalized PCMs. Thanks to its adhesion and secondary reactivity, Pdop can be deposited on virtually all substrates to improve their bioavailability and biocompatibility. Pdop-based PCMs could not be only functionalized with small biomolecules,via,chemical bonds and/or noncovalent force but also modified with functional polymers,via,either the “grafting to” or “grafting from” method. This review highlights the synthetic methods, therapeutic strategies, and designs of PCMs based on Pdop in recent years to explore its scope and limitations.
PolydopaminePhotothermal therapyDrug delivery systemsPolymersTumor theranostics
Castro, D. J.; Saxton, R. E.; Soudant, J.The concept of laser phototherapy.Otolaryngo.l Clin. North Am.,1996,291011-1029.DOI:10.1016/S0030-6665(20)30297-8http://doi.org/10.1016/S0030-6665(20)30297-8.
Bai, Z.; Zhao, Z.; Tian, M.; Jin, D.; Pang, Y.; Li, S.; Yan, X.; Wang, Y.; Lu, Z.A comprehensive review on the development and applications of narrow-linewidth lasers.Microw. Opt. Technol. Lett.,2021,642244-2255.
Li, X.; Lovell, J.F.; Yoon, J.; Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer.Nat. Rev. Clin. Oncol.,2020,17657-674.DOI:10.1038/s41571-020-0410-2http://doi.org/10.1038/s41571-020-0410-2.
Zhu, H.; Cheng, P.; Chen, P.; Pu, K.Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics.Biomater. Sci.,2018,6746-765.DOI:10.1039/C7BM01210Ahttp://doi.org/10.1039/C7BM01210A.
Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X.Photothermal therapy and photoacoustic imagingviananotheranostics in fighting cancer.Chem. Soc. Rev.,2019,482053-2108.DOI:10.1039/C8CS00618Khttp://doi.org/10.1039/C8CS00618K.
Meng, Z.; Wei, F.; Wang, R.; Xia, M.; Chen, Z.; Wang, H.; Zhu, M.NIR-laser-switchedin vivosmart nanocapsules for synergic photothermal and chemotherapy of tumors.Adv. Mater.,2016,28245-53.DOI:10.1002/adma.201502669http://doi.org/10.1002/adma.201502669.
Zhi, D.; Yang, T.; O'Hagan, J.; Zhang, S.; Donnelly, R. F.Photothermal therapy.J. Control. Rel.,2020,32552-71.DOI:10.1016/j.jconrel.2020.06.032http://doi.org/10.1016/j.jconrel.2020.06.032.
Liu, S. W.; Wang, L.; Lin, M.; Liu, Y.; Zhang, L. N.; Zhang, H.Tumor photothermal therapy employing photothermal inorganic nanoparticles/polymers nanocomposites.Chinese J. Polym. Sci.,2018,37115-128.DOI:10.1007/s10118-019-2193-4http://doi.org/10.1007/s10118-019-2193-4.
Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S.Organic molecule-based photothermal agents: an expanding photothermal therapy universe.Chem. Soc. Rev.,2018,472280-2297.DOI:10.1039/C7CS00522Ahttp://doi.org/10.1039/C7CS00522A.
Liu, S.; Pan, X.; Liu, H.Two-dimensional nanomaterials for photothermal therapy.Angew. Chem. Int. Ed.,2020,595890-5900.DOI:10.1002/anie.201911477http://doi.org/10.1002/anie.201911477.
Lv, Z.; He, S.; Wang, Y.; Zhu, X.Noble metal nanomaterials for NIR-triggered photothermal therapy in cancer.Adv. Healthc. Mater.,2021,10e2001806DOI:10.1002/adhm.202001806http://doi.org/10.1002/adhm.202001806.
Chen, L.; Sun, X. Q.; Cheng, K.; Topham, P. D.; Xu, M. M.; Jia, Y. F.; Dong, D. H.; Wang, S.; Liu, Y.; Wang, L. G.; Yu, Q. Q..Temperature-regulating phase change fiber scaffold toward mild photothermal-chemotherapy.Adv. Fiber Mater.,2022:10.1007/s42765-022-00199-8DOI:10.1007/s42765-022-00199-8http://doi.org/10.1007/s42765-022-00199-8.
Vines, J. B.; Yoon, J. H.; Ryu, N. E.; Lim, D. J.; Park, H.Gold nanoparticles for photothermal cancer therapy.Front. Chem.,2019,7167DOI:10.3389/fchem.2019.00167http://doi.org/10.3389/fchem.2019.00167.
Feng, S. P.; Lu, J. Y.; Wang, K. L.; Di, D. H.; Shi, Z. N.; Zhao, Q. F.; Wang, S. L.Advances in smart mesoporous carbon nanoplatforms for photothermal-enhanced synergistic cancer therapy.Chem. Eng. J.,2022,435134886DOI:10.1016/j.cej.2022.134886http://doi.org/10.1016/j.cej.2022.134886.
Chen, T. X.; Yao, T. T.; Peng, H.; Whittaker, A. K.; Li, Y.; Zhu, S. M.; Wang, Z. Y.An injectable hydrogel for simultaneous photothermal therapy and photodynamic therapy with ultrahigh efficiency based on carbon dots and modified cellulose nanocrystals.Adv. Funct. Mater.,2021,312106079DOI:10.1002/adfm.202106079http://doi.org/10.1002/adfm.202106079.
Ding, Z. L.; Gu, Y. H.; Zheng, C.; Gu, Y. Q.; Yang, J.; Li, D. H.; Xu, Y. N.; Wang, P.Organic small molecule-based photothermal agents for cancer therapy: Design strategies from single-molecule optimization to synergistic enhancement.Coord. Chem. Rev.,2022,464214564DOI:10.1016/j.ccr.2022.214564http://doi.org/10.1016/j.ccr.2022.214564.
Xu, L. G.; Cheng, L.; Wang, C.; Peng, R.; Liu, Z..Conjugated polymers for photothermal therapy of cancer.Polym. Chem.,2014,51573-1580.DOI:10.1039/C3PY01196Hhttp://doi.org/10.1039/C3PY01196H.
Wang, Y. F.; Meng, H. M.; Song, G. S.; Li, Z. H.; Zhang, X. B.Conjugated-polymer-based nanomaterials for photothermal therapy.ACS Appl. Polym. Mater.,2020,24258-4272.DOI:10.1021/acsapm.0c00680http://doi.org/10.1021/acsapm.0c00680.
Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M.L.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials.Chem. Soc. Rev.,2012,412323-43.DOI:10.1039/C1CS15188Fhttp://doi.org/10.1039/C1CS15188F.
Nel, A.; Xia, T.; Madler, L.; Li, N.Toxic potential of materials at the nanolevel.Science,2006,311622-627.DOI:10.1126/science.1114397http://doi.org/10.1126/science.1114397.
Wu, D.; Zhou, J.; Creyer, M. N.; Yim, W.; Chen, Z.; Messersmith, P. B.; Jokerst, J. V.Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine.Chem. Soc. Rev.,2021,504432-4483.DOI:10.1039/D0CS00908Chttp://doi.org/10.1039/D0CS00908C.
Khan, K.; Tareen, A.K.; Iqbal, M.; Mahmood, A.; Mahmood, N.; Shi, Z.; Yin, J.; Qing, D.; Ma, C.; Zhang, H. Recent development in graphdiyne and its derivative materials for novel biomedical applications.J. Mater. Chem. B,2021,99461-9484.DOI:10.1039/D1TB01794Bhttp://doi.org/10.1039/D1TB01794B.
Cao, W.; Zhou, X.; McCallum, N. C.; Hu, Z.; Ni, Q. Z.; Kapoor, U.; Heil, C. M.; Cay, K. S.; Zand, T.; Mantanona, A. J.; Jayaraman, A.; Dhinojwala, A.; Deheyn, D. D.; Shawkey, M. D.; Burkart, M. D.; Rinehart, J. D.; Gianneschi, N. C.Unraveling the structure and function of melanin through synthesis.J. Am. Chem. Soc.,2021,1432622-2637.DOI:10.1021/jacs.0c12322http://doi.org/10.1021/jacs.0c12322.
Liu, Y.; Ai, K.; Lu, L.Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields.Chem. Rev.,2014,1145057-5115.DOI:10.1021/cr400407ahttp://doi.org/10.1021/cr400407a.
Ryu, J. H.; Messersmith, P. B.; Lee, H.Polydopamine Surface Chemistry: A Decade of Discovery.ACS Appl. Mater. Interfaces,2018,107523-7540.DOI:10.1021/acsami.7b19865http://doi.org/10.1021/acsami.7b19865.
d'Ischia, M.; Napolitano, A.; Ball, V.; Chen, C. T.; Buehler, M. J.Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy.Acc. Chem. Res.,2014,473541-3550.DOI:10.1021/ar500273yhttp://doi.org/10.1021/ar500273y.
Yan, J.; Yang, L.; Lin, M. F.; Ma, J.; Lu, X.; Lee, P. S.Polydopamine spheres as active templates for convenient synthesis of various nanostructures.Small,2013,9596-603.DOI:10.1002/smll.201201064http://doi.org/10.1002/smll.201201064.
Ju, K. Y.; Lee, Y.; Lee, S.; Park, S. B.; Lee, J. K.Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property.Biomacromolecules,2011,12625-632.DOI:10.1021/bm101281bhttp://doi.org/10.1021/bm101281b.
Du, X.; Li, L.; Li, J.; Yang, C.; Frenkel, N.; Welle, A.; Heissler, S.; Nefedov, A.; Grunze, M.; Levkin, P. A.UV-triggered dopamine polymerization: control of polymerization, surface coating, and photopatterning.Adv. Mater.,2014,268029-8033.DOI:10.1002/adma.201403709http://doi.org/10.1002/adma.201403709.
Lee, H.A.; Ma, Y.; Zhou, F.; Hong, S.; Lee, H. Material-independent surface chemistry beyond polydopamine coating.Acc. Chem. Res.,2019,52704-713.DOI:10.1021/acs.accounts.8b00583http://doi.org/10.1021/acs.accounts.8b00583.
Liebscher, J.; Mrowczynski, R.; Scheidt, H. A.; Filip, C.; Hadade, N.D.; Turcu, R.; Bende, A.; Beck, S. Structure of polydopamine: a never-ending story.Langmuir,2013,2910539-10548.DOI:10.1021/la4020288http://doi.org/10.1021/la4020288.
Lee, H.; Scherer, N. F.; Messersmith, P. B.Single-molecule mechanics of mussel adhesion.Proc. Natl. Acad. Sci. U. S. A.,2006,10312999-13003.DOI:10.1073/pnas.0605552103http://doi.org/10.1073/pnas.0605552103.
Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B.Mussel-inspired surface chemistry for multifunctional coatings.Science,2007,318426-430.DOI:10.1126/science.1147241http://doi.org/10.1126/science.1147241.
Zeng, H.; Hwang, D. S.; Israelachvili, J. N.Waite, Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water.Proc. Natl. Acad. Sci. U. S. A.,2010,10712850-12853.DOI:10.1073/pnas.1007416107http://doi.org/10.1073/pnas.1007416107.
Zhang, C.; Ou, Y.; Lei, W. X.; Wan, L. S.; Ji, J.; Xu, Z. K.CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability.Angew. Chem. Int. Ed.,2016,553054-3057.DOI:10.1002/anie.201510724http://doi.org/10.1002/anie.201510724.
Goh, S.; Luan, Y.; Wang, X.; Du, H.; Chau, C.; Schellhorn, H.; Brash, J.; Chen, H.; Fang, Q.Polydopamine-polyethylene glycol-albumin antifouling coatings on multiple substrates.J. Mater. Chem. B,2018,6940-949.DOI:10.1039/C7TB02636Fhttp://doi.org/10.1039/C7TB02636F.
Ma, Z.; Jia, X.; Hu, J.; Liu, Z.; Wang, H.; Zhou, F.Mussel-inspired thermosensitive polydopamine-graft-poly(N-isopropylacryl- amide) coating for controlled-release fertilizer.J. Agr. Food Chem.,2013,6112232-12237.DOI:10.1021/jf4038826http://doi.org/10.1021/jf4038826.
Sheng, W.; Li, B.; Wang, X.; Dai, B.; Yu, B.; Jia, X.; Zhou, F.Brushing up from "anywhere" under sunlight: a universal surface-initiated polymerization from polydopamine-coated surfaces.Chem. Sci.,2015,62068-2073.DOI:10.1039/C4SC03851Ghttp://doi.org/10.1039/C4SC03851G.
Liu, Y.; Ai, K.; Liu, J.; Deng, M.; He, Y.; Lu, L.Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent forin vivocancer therapy.Adv. Mater.,2013,251353-1359.DOI:10.1002/adma.201204683http://doi.org/10.1002/adma.201204683.
Ding, X.; Liu, J. H.; Liu, D. P.; Li, J. Q.; Wang, F.; Li, L. J.; Wang, Y. H.; Song, S. Y.; Zhang, H. J.Multifunctional core/satellite polydopamine@Nd3+-sensitized upconversion nanocomposite: a single 808 nm near-infrared light-triggered theranostic platform forin vivoimaging-guided photothermal therapy.Nano Res.,2017,103434-3446.DOI:10.1007/s12274-017-1555-xhttp://doi.org/10.1007/s12274-017-1555-x.
Li, D.; Zhang, Y.; Wen, S.; Song, Y.; Tang, Y.; Zhu, X.; Shen, M.; Mignani, S.; Majoral, J.P.; Zhao, Q.; Shi, X. Construction of polydopamine-coated gold nanostars for CT imaging and enhanced photothermal therapy of tumors: an innovative theranostic strategy.J. Mater. Chem. B,2016,44216-4226.DOI:10.1039/C6TB00773Bhttp://doi.org/10.1039/C6TB00773B.
Liu, T.; Li, S.; Liu, Y.; Guo, Q.; Wang, L.; Liu, D.; Zhou, J.Mn-complex modified NaDyF4:Yb@NaLuF4:Yb,Er@polydopamine core-shell nanocomposites for multifunctional imaging-guided photothermal therapy.J. Mater. Chem. B,2016,42697-2705.DOI:10.1039/C5TB02785Chttp://doi.org/10.1039/C5TB02785C.
Wang, C.; Bai, J.; Liu, Y.; Jia, X.; Jiang, X.Polydopamine coated selenide molybdenum: a new photothermal nanocarrier for highly effective chemo-photothermal synergistic therapy.ACS Biomater. Sci. Eng.,2016,22011-2017.DOI:10.1021/acsbiomaterials.6b00416http://doi.org/10.1021/acsbiomaterials.6b00416.
Wang, F.; Sun, Q.; Feng, B.; Xu, Z.; Zhang, J.; Xu, J.; Lu, L.; Yu, H.; Wang, M.; Li, Y.; Zhang, W.Polydopamine-functionalized graphene oxide loaded with gold nanostars and doxorubicin for combined photothermal and chemotherapy of metastatic breast cancer.Adv. Healthc. Mater.,2016,52227-2236.DOI:10.1002/adhm.201600283http://doi.org/10.1002/adhm.201600283.
Li, X. R.; Yin, B. L.; Gao, L.; Li, X. H.; Huang, H. W.; Song, G. S.; Zhou, Y. G.One-step reduction-encapsulated synthesis of Ag@polydopamine multicore-shell nanosystem for enhanced photoacoustic imaging and photothermal-chemodynamic cancer therapy.Nano Res.,2022,158291-8303.DOI:10.1007/s12274-022-4474-4http://doi.org/10.1007/s12274-022-4474-4.
Leng, J.; Dai, X.; Cheng, X.; Zhou, H.; Wang, D.; Zhao, J.; Ma, K.; Cui, C.; Wang, L.; Guo, Z.Biomimetic cucurbitacinb-polydopamine nanoparticles for synergistic chemo-photothermal therapy of breast cancer.Front. Bioeng. Biotechnol.,2022,10841186DOI:10.3389/fbioe.2022.841186http://doi.org/10.3389/fbioe.2022.841186.
Chen, R.; Zhu, C.; Fan, Y.; Feng, W.; Wang, J.; Shang, E.; Zhou, Q.; Chen, Z.Polydopamine-based multifunctional platform for combined photothermal therapy, chemotherapy, and immunotherapy in malignant tumor treatment.ACS Appl. Bio. Mater.,2019,2874-883.DOI:10.1021/acsabm.8b00718http://doi.org/10.1021/acsabm.8b00718.
Du, X. F.; Li, Y.; Long, J.; Zhang, W.; Wang, D.; Li, C. R.; Zhao, M. X.; Lai, Y.Fabrication of cisplatin-loaded polydopamine nanoparticlesviasupramolecular self-assembly for photoacoustic imaging guided chemo-photothermal cancer therapy.Appl. Mater. Today,2021,23101019DOI:10.1016/j.apmt.2021.101019http://doi.org/10.1016/j.apmt.2021.101019.
Li, S. N.; Zhang, L. Y.; Liang, X.; Wang, T. T.; Chen, X. J.; Liu, C. M.; Li, L.; Wang, C. G.Tailored synthesis of hollow MOF/polydopamine Janus nanoparticles for synergistic multi-drug chemo-photothermal therapy.Chem. Eng. J.,2019,378122175DOI:10.1016/j.cej.2019.122175http://doi.org/10.1016/j.cej.2019.122175.
Huang, C.; Zhang, L.; Guo, Q.; Zuo, Y.; Wang, N.; Wang, H.; Kong, D.; Zhu, D.; Zhang, L.Robust nanovaccine based on polydopamine-coated mesoporous silica nanoparticles for effective photothermal-immunotherapy against melanoma.Adv. Funct. Mater.,2021,312010637DOI:10.1002/adfm.202010637http://doi.org/10.1002/adfm.202010637.
Song, G.; Sun, Y. F.; Liu, T. Q.; Zhang, X. Y.; Zeng, Z. Y.; Wang, R. F.; Li, P. F.; Li, C. H.; Jiang, G. H.Transdermal delivery of Cu-doped polydopamine using microneedles for photothermal and chemodynamic synergistic therapy against skin melanoma.Chem. Eng. J.,2021,426130790DOI:10.1016/j.cej.2021.130790http://doi.org/10.1016/j.cej.2021.130790.
Yang, G.; Li, M.; Song, T.; Chen, X.; Zhang, H.; Wei, X.; Li, N.; Li, T.; Qin, X.; Li, S.; You, F.; Wu, C.; Zhang, W.; Liu, Y.; Yang, H.Polydopamine-engineered theranostic nanoscouts enabling intracellular HSP90 mRNAs fluorescence detection for imaging-guided chemo-photothermal therapy.Adv. Healthc. Mater.,2022,112201615DOI:10.1002/adhm.202201615http://doi.org/10.1002/adhm.202201615.
Wu, R.; Wang, H. Z.; Hai, L.; Wang, T. Z.; Hou, M.; He, D. G.; He, X. X.; Wang, K. M.A photosensitizer-loaded zinc oxide-polydopamine core-shell nanotherapeutic agent for photodynamic and photothermal synergistic therapy of cancer cells.Chin. Chem. Lett.,2020,31189-192.DOI:10.1016/j.cclet.2019.05.004http://doi.org/10.1016/j.cclet.2019.05.004.
Ai, K.; Liu, Y.; Ruan, C.; Lu, L.; Lu, G. M.Sp2C-dominant N-doped carbon sub-micrometer spheres with a tunable size: a versatile platform for highly efficient oxygen-reduction catalysts.Adv. Mater.,2013,25998-1003.DOI:10.1002/adma.201203923http://doi.org/10.1002/adma.201203923.
Wang, Y.; Li, T.; Wang, X.; Ma, P.; Bai, H.; Dong, W.; Xie, Y.; Chen, M.Superior performance of polyurethane based on natural melanin nanoparticles.Biomacromolecules,2016,173782-3789.DOI:10.1021/acs.biomac.6b01298http://doi.org/10.1021/acs.biomac.6b01298.
Xing, Y.; Zhang, J.; Chen, F.; Liu, J.; Cai, K.Mesoporous polydopamine nanoparticles with co-delivery function for overcoming multidrug resistanceviasynergistic chemo-photothermal therapy.Nanoscale,2017,98781-8790.DOI:10.1039/C7NR01857Fhttp://doi.org/10.1039/C7NR01857F.
Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H.; Pennycook, S. J.; Dai, S.Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites.Angew. Chem. Int. Ed.,2011,506799-6802.DOI:10.1002/anie.201102070http://doi.org/10.1002/anie.201102070.
Xu, H.; Liu, X.; Wang, D.Interfacial basicity-guided formation of polydopamine hollow capsules in pristine o/w emulsions-toward understanding of emulsion template roles.Chem. Mater.,2011,235105-5110.DOI:10.1021/cm2028417http://doi.org/10.1021/cm2028417.
Zhuang, H.; Su, H.; Bi, X.; Bai, Y.; Chen, L.; Ge, D.; Shi, W.; Sun, Y.Polydopamine nanocapsule: a theranostic agent for photoacoustic imaging and chemo-photothermal synergistic therapy.ACS Biomater. Sci. Eng.,2017,31799-1808.DOI:10.1021/acsbiomaterials.7b00260http://doi.org/10.1021/acsbiomaterials.7b00260.
Shu, G.; Chen, M.; Song, J.; Xu, X.; Lu, C.; Du, Y.; Xu, M.; Zhao, Z.; Zhu, M.; Fan, K.; Fan, X.; Fang, S.; Tang, B.; Dai, Y.; Du, Y.; Ji, J.Sialic acid-engineered mesoporous polydopamine nanoparticles loaded with SPIO and Fe3+as a novel theranostic agent for T1/T2 dual-mode MRI-guided combined chemo-photothermal treatment of hepatic cancer.Bioact. Mater.,2021,61423-1435.DOI:10.1016/j.bioactmat.2020.10.020http://doi.org/10.1016/j.bioactmat.2020.10.020.
Vander Heiden, M. G.Targeting cancer metabolism: a therapeutic window opens.Nat. Rev. Drug Discov.,2011,10671-684.DOI:10.1038/nrd3504http://doi.org/10.1038/nrd3504.
Sudimack, J.; Lee, R. J.Targeted drug deliveryviathe folate receptor.Adv. Drug Deliv. Rev.,2000,41147-162.DOI:10.1016/S0169-409X(99)00062-9http://doi.org/10.1016/S0169-409X(99)00062-9.
Zhou, D. H.; Zhang, G.; Yu, Q. S.; Gan, Z. H.Folic acid modified polymeric micelles for intravesical instilled chemotherapy.Chinese J. Polym. Sci.,2018,36479-487.DOI:10.1007/s10118-018-2009-yhttp://doi.org/10.1007/s10118-018-2009-y.
Fan, R.; Chen, C.; Hou, H.; Chuan, D.; Mu, M.; Liu, Z.; Liang, R.; Guo, G.; Xu, J.Tumor acidity and near-infrared light responsive dual drug delivery polydopamine-based nanoparticles for chemo-photothermal therapy.Adv. Funct. Mater.,2021,312009733DOI:10.1002/adfm.202009733http://doi.org/10.1002/adfm.202009733.
Li, J.; Zhang, Z.; Deng, H.; Zheng, Z.Cinobufagin-loaded and folic acid-modified polydopamine nanomedicine combined with photothermal therapy for the treatment of lung cancer.Front. Chem.,2021,9637754DOI:10.3389/fchem.2021.637754http://doi.org/10.3389/fchem.2021.637754.
Zeng, W. W.; Zhang, H. J.; Deng, Y. M.; Jiang, A. T.; Bao, X. Y.; Guo, M. Q.; Li, Z. M.; Wu, M. Y.; Ji, X. Y.; Zeng, X. W.; Mei, L.Dual-response oxygen-generating MnO2nanoparticles with polydopamine modification for combined photothermal-photodynamic therapy.Chem. Eng. J.,2020,389124494DOI:10.1016/j.cej.2020.124494http://doi.org/10.1016/j.cej.2020.124494.
Wang, S.; Lin, Q. J.; Chen, J. T.; Gao, H. L.; Fu, D. L.; Shen, S.Biocompatible polydopamine-encapsulated gadolinium-loaded carbon nanotubes for MRI and color mapping guided photothermal dissection of tumor metastasis.Carbon,2017,11253-62.DOI:10.1016/j.carbon.2016.10.096http://doi.org/10.1016/j.carbon.2016.10.096.
Guo, H.; Sun, H.; Zhu, H.; Guo, H.; Sun, H.Synthesis of Gd-functionalized Fe3O4@polydopamine nanocomposites for T1/T2 dual-modal magnetic resonance imaging-guided photothermal therapy.New J. Chem.,2018,427119-7124.DOI:10.1039/C8NJ00454Dhttp://doi.org/10.1039/C8NJ00454D.
Zhang, M.; Zheng, T.; Sheng, B. L.; Wu, F.; Zhang, Q. C.; Wang, W. T.; Shen, J.; Zhou, N. L.; Sun, Y.Mn2+complex-modified polydopamine- and dual emissive carbon dots based nanoparticles forin vitroandin vivotrimodality fluorescent, photothermal, and magnetic resonance imaging.Chem. Eng. J.,2019,3731054-1063.DOI:10.1016/j.cej.2019.05.107http://doi.org/10.1016/j.cej.2019.05.107.
Lu, J.; Ni, C.; Huang, J.; Liu, Y.; Tao, Y.; Hu, P.; Wang, Y.; Zheng, S.; Shi, M..Biocompatible mesoporous silica-polydopamine nanocomplexes as MR/fluorescence imaging agent for light-activated photothermal-photodynamic cancer therapyin vivo.Front. Bioeng. Biotechnol.,2021,9752982DOI:10.3389/fbioe.2021.752982http://doi.org/10.3389/fbioe.2021.752982.
Zhang, N. N.; Shu, G. F.; Shen, L.; Ding, J. Y.; Qiao, E. Q.; Fang, S. J.; Song, J. J.; Yang, Y.; Zhao, Z. W.; Lu, C. Y.; Tu, J. F.; Xu, M.; Du, Y. Z.; Chen, M. J.; Ji, J. S.Biomimetic mesoporous polydopamine nanoparticles for MRI-guided photothermal-enhanced synergistic cascade chemodynamic cancer therapy.Nano Res.,2022,155262-5272.DOI:10.1007/s12274-022-4165-1http://doi.org/10.1007/s12274-022-4165-1.
Zhao, F.; Ma, M. L.; Xu, B.Molecular hydrogels of therapeutic agents.Chem. Soc. Rev.,2009,38883-891.DOI:10.1039/b806410phttp://doi.org/10.1039/b806410p.
Wang, X.; Wang, C. P.; Wang, X. Y.; Wang, Y. T.; Zhang, Q.; Cheng, Y. Y.A Polydopamine nanoparticle-knotted poly(ethylene glycol) hydrogel for on-demand drug delivery and chemo-photothermal therapy.Chem. Mater.,2017,291370-1376.DOI:10.1021/acs.chemmater.6b05192http://doi.org/10.1021/acs.chemmater.6b05192.
Zhuang, B.; Chen, T.; Huang, Y.; Xiao, Z.; Jin, Y.Chemo-photothermal immunotherapy for eradication of orthotopic tumors and inhibition of metastasis by intratumoral injection of polydopamine versatile hydrogels.Acta Pharm. Sin. B,2022,121447-1459.DOI:10.1016/j.apsb.2021.09.001http://doi.org/10.1016/j.apsb.2021.09.001.
Zhao, Z.; Zhang, H.; Chen, H.; Xu, Y.; Ma, L.; Wang, Z.An efficient photothermal-chemotherapy platform based on a polyacrylamide/phytic acid/polydopamine hydrogel.J. Mater. Chem. B,2022,104012-4019.DOI:10.1039/D2TB00677Dhttp://doi.org/10.1039/D2TB00677D.
Ding, F.; Gao, X.; Huang, X.; Ge, H.; Xie, M.; Qian, J.; Song, J.; Li, Y.; Zhu, X.; Zhang, C.Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy.Biomaterials,2020,245119976DOI:10.1016/j.biomaterials.2020.119976http://doi.org/10.1016/j.biomaterials.2020.119976.
Zhou, T.; Zhu, Y. Z.; Li, X.; Liu, X. M.; Yeung, K. W. K.; Wu, S. L.; Wang, X. B.; Cui, Z. D.; Yang, X. J.; Chu, P. K.Surface functionalization of biomaterials by radical polymerization.Prog. Mater. Sci.,2016,83191-235.DOI:10.1016/j.pmatsci.2016.04.005http://doi.org/10.1016/j.pmatsci.2016.04.005.
Ferruti, P.; Ranucci, E.; Sartore, L.; Bignotti, F.; Marchisio, M. A.; Bianciardi, P.; Veronese, F. M.Recent results on functional polymers and macromonomers of interest as biomaterials or for biomaterial modification.Biomaterials,1994,151235-1241.DOI:10.1016/0142-9612(94)90275-5http://doi.org/10.1016/0142-9612(94)90275-5.
Sun, W.; Liu, W.; Wu, Z.; Chen, H.Chemical surface modification of polymeric biomaterials for biomedical applications.Macromol. Rapid Commun.,2020,411900430DOI:10.1002/marc.201900430http://doi.org/10.1002/marc.201900430.
Wang, T.; Niu, K.; Ni, S.; Zhang, W. D.; Liu, Z. W.; Zhang, X. W.Hyaluronic acid-modified gold-polydopamine complex nanomedicine for tumor-targeting drug delivery and chemo-photothermal-therapy synergistic therapy.ACS Sustainable Chem. Eng.,2022,101585-1594.DOI:10.1021/acssuschemeng.1c07231http://doi.org/10.1021/acssuschemeng.1c07231.
Mou, C.; Yang, Y.; Bai, Y.; Yuan, P.; Wang, Y.; Zhang, L.Hyaluronic acid and polydopamine functionalized phase change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy.J. Mater. Chem. B,2019,71246-1257.DOI:10.1039/C8TB03056Ahttp://doi.org/10.1039/C8TB03056A.
Qiu, W. Z.; Wu, G. P.; Xu, Z. K.Robust coatingsviacatechol-amine codeposition: mechanism, kinetics, and application.ACS Appl. Mater. Interfaces,2018,105902-5908.DOI:10.1021/acsami.7b18934http://doi.org/10.1021/acsami.7b18934.
Liu, C. Y.; Huang, C. J.Functionalization of polydopamineviathe Aza-Michael reaction for antimicrobial interfaces.Langmuir,2016,325019-5028.DOI:10.1021/acs.langmuir.6b00990http://doi.org/10.1021/acs.langmuir.6b00990.
Liu, M.; Zeng, G.; Wang, K.; Wan, Q.; Tao, L.; Zhang, X.; Wei, Y.Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications.Nanoscale,2016,816819-16840.DOI:10.1039/C5NR09078Dhttp://doi.org/10.1039/C5NR09078D.
Zhang, H.; Sun, Y.; Huang, R.; Cang, H.; Cai, Z.; Sun, B.pH-sensitive prodrug conjugated polydopamine for NIR-triggered synergistic chemo-photothermal therapy.Eur. J. Pharm. Biopharm.,2018,128260-271.DOI:10.1016/j.ejpb.2018.05.013http://doi.org/10.1016/j.ejpb.2018.05.013.
Lu, W.; Liao, Y. X.; Jiang, C. Z.; Wang, R. M.; Shan, X. R.; Chen, Q.; Sun, G. Y.; Liu, J. H.Polydopamine- coated NaGdF4:Dy for T1/T2-weighted MRI/CT multimodal imaging- guided photothermal therapy.New J. Chem.,2019,437371-7378.DOI:10.1039/C9NJ00561Ghttp://doi.org/10.1039/C9NJ00561G.
Li, W.; Hu, J.; Wang, J.; Tang, W.; Yang, W.; Liu, Y.; Li, R.; Liu, H.Polydopamine-mediated polypyrrole/doxorubicin nanocomplex for chemotherapy-enhanced photothermal therapy in both NIR-I and NIR-II biowindows against tumor cells.J. Appl. Polym. Sci.,2020,13749239DOI:10.1002/app.49239http://doi.org/10.1002/app.49239.
Liu, M.; Zhang, J.; Li, X.; Cai, C.; Cao, X.; Shi, X.; Guo, R.A polydopamine-coated LAPONITER-stabilized iron oxide nanoplatform for targeted multimodal imaging-guided photothermal cancer therapy.J. Mater. Chem. B,2019,73856-3864.DOI:10.1039/C9TB00398Chttp://doi.org/10.1039/C9TB00398C.
Yang, Z.; Ren, J.; Ye, Z.; Zhu, W.; Xiao, L.; Zhang, L.; He, Q.; Xu, Z.; Xu, H.Bio-inspired synthesis of PEGylated polypyrrole@polydopamine nanocomposites as theranostic agents for T1-weighted MR imaging guided photothermal therapy.J. Mater. Chem. B,2017,51108-1116.DOI:10.1039/C6TB02740Ghttp://doi.org/10.1039/C6TB02740G.
Zhang, M.; Zhang, L.; Chen, Y.; Li, L.; Su, Z.; Wang, C.Precise synthesis of unique polydopamine/mesoporous calcium phosphate hollow Janus nanoparticles for imaging-guided chemo-photothermal synergistic therapy.Chem. Sci.,2017,88067-8077.DOI:10.1039/C7SC03521Ghttp://doi.org/10.1039/C7SC03521G.
Ding, X.; Liu, J.; Li, J.; Wang, F.; Wang, Y.; Song, S.; Zhang, H.Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy.Chem. Sci.,2016,76695-6700.DOI:10.1039/C6SC01320Ahttp://doi.org/10.1039/C6SC01320A.
Fan, H.; Yan, T.; Chen, S.; Du, Z.; Alimu, G.; Zhu, L.; Ma, R.; Tang, X.; Heng, Y.; Alifu, N.; Zhang, X.Polydopamine encapsulated new indocyanine green theranostic nanoparticles for enhanced photothermal therapy in cervical cancer HeLa cells.Front. Bioeng. Biotechnol.,2022,10984166DOI:10.3389/fbioe.2022.984166http://doi.org/10.3389/fbioe.2022.984166.
Hu, H. Y.; Yu, B.; Ye, Q.; Gu, Y. S.; Zhou, F.Modification of carbon nanotubes with a nanothin polydopamine layer and polydimethylamino-ethyl methacrylate brushes.Carbon,2010,482347-2353.DOI:10.1016/j.carbon.2010.03.014http://doi.org/10.1016/j.carbon.2010.03.014.
Zhu, B. C.; Edmondson, S.Polydopamine-melanin initiators for surface-initiated ATRP.Polymer,2011,522141-2149.DOI:10.1016/j.polymer.2011.03.027http://doi.org/10.1016/j.polymer.2011.03.027.
Ma, Z.; Jia, X.; Zhang, G.; Hu, J.; Zhang, X.; Liu, Z.; Wang, H.; Zhou, F..pH-responsive controlled-release fertilizer with water retentionviaatom transfer radical polymerization of acrylic acid on mussel-inspired initiator.J. Agric. Food Chem.,2013,615474-5482.DOI:10.1021/jf401102ahttp://doi.org/10.1021/jf401102a.
Yan, Q.; Fan, F.; Zhang, B.; Liu, G.; Chen, Y.MoS2nanosheets functionalized with ferrocene-containing polymerviaSI-ATRP for memristive devices with multilevel resistive switching.Eur. Polym. J.,2022,174111316DOI:10.1016/j.eurpolymj.2022.111316http://doi.org/10.1016/j.eurpolymj.2022.111316.
Zhang, M.; Zou, Y.; Zhong, Y.; Liao, G.; Yu, C.; Xu, Z.Polydopamine-based tumor-targeted multifunctional reagents for computer tomography/fluorescence dual-mode bioimaging-guided photothermal therapy.ACS Appl. Bio Mater.,2019,2630-637.DOI:10.1021/acsabm.8b00797http://doi.org/10.1021/acsabm.8b00797.
Li, S. S.; Wang, F.; Yang, Z. X. S.; Xu, J.; Liu, H.; Zhang, L. L.; Xu, W. S.Emulsifying performance of near-infrared light responsive polydopamine-based silica particles to control drug release.Powder Technol.,2020,35917-26.DOI:10.1016/j.powtec.2019.09.064http://doi.org/10.1016/j.powtec.2019.09.064.
0
Views
34
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution