a.Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China
b.State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
zhanghao@qust.edu.cn(H.Z.)
skyan@mail.buct.edu.cn(S.K.Y.)
Scan for full text
Hao Zhang, Ying-Xiao Song, Na Li, et al. Influence of Freezing Layer on the Crystallization Kinetics of PCL on Oriented PE Film. [J]. Chinese Journal of Polymer Science 41(5):778-786(2023)
Hao Zhang, Ying-Xiao Song, Na Li, et al. Influence of Freezing Layer on the Crystallization Kinetics of PCL on Oriented PE Film. [J]. Chinese Journal of Polymer Science 41(5):778-786(2023) DOI: 10.1007/s10118-023-2929-z.
The crystallization rate of PCL on oriented PE substrate decreases with increasing film thickness, which is attributed to the existence of a freezing PCL layer with pre-oriented chain segments. It is found that freezing PCL layer at PE surface has a similar thickness as the,R,g,of used PCL.
The effect of freezing layer on the crystallization kinetics of poly(,ε,-caprolactone) (PCL) thin and ultrathin films was investigated by monitor the growth process of it on oriented polyethylene (PE) and CaF,2,with and without freezing layer, respectively. It was found that the PCL films with similar thicknesses crystallize much faster on oriented PE than on CaF,2,substrate. For example, the crystallization rate constant of a 102 nm thick PCL film decreases tremendously by 3 orders of magnitude from 1.1×10,−1,on PE substrate at 50 °C to 7×10,−4,on CaF,2,surface at 40 °C. Moreover, the crystallization of PCL accelerates on CaF,2,surface while slows down at PE surface with increasing film thickness. The ultrathin films of PCL with thickness less than 14 nm exhibits the fastest crystallization rate on oriented PE with a rate constant of about 3.5×10,−1, which is 3 times higher than that of a,ca,. 50 nm thick film. This illustrates the great influence of freezing layer on the crystallization process of PCL. The freezing layer thickness of PCL on PE is estimated to be in the range of 14−17 nm. Taking the radius of gyration (,R,g,~ 15.6 nm) of the used PCL material into account, the obtained results may imply the existence of a correlation between the,R,g,of PCL and its freezing layer thickness at PE substrate.
Poly(ε-caprolactone)PolyethyleneInterfaceFreezing layerCrystallization kinetics
Corradini, P.; Guerra, G. Polymorphism in polymers. InMacromolecules: Synthesis, Order and Advanced Properties, Springer Berlin Heidelberg: Berlin, Heidelberg,1992; pp. 183-217.
Lovinger, A. J.Ferroelectric polymers.Science,1983,2201115-1121.DOI:10.1126/science.220.4602.1115http://doi.org/10.1126/science.220.4602.1115.
Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R.All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes.Nat. Rev. Mater.,2018,31-20.DOI:10.1038/s41578-018-0013-zhttp://doi.org/10.1038/s41578-018-0013-z.
Smith, P.; Lemstra, P. J.Ultra-high-strength polyethylene filaments by solution spinning/drawing.J. Mater. Sci.,1980,15505-514.DOI:10.1007/BF02396802http://doi.org/10.1007/BF02396802.
Li, C.; Xu, Y.; Liu, Y.; Ren, Z.; Ma, Y.; Yan, S.Highly efficient white-emitting thermally activated delayed fluorescence polymers: synthesis, non-doped white OLEDs and electroluminescent mechanism.Nano Energy,2019,65104057DOI:10.1016/j.nanoen.2019.104057http://doi.org/10.1016/j.nanoen.2019.104057.
Li, C.; Ren, Z.; Sun, X.; Li, H.; Yan, S.Deep-blue thermally activated delayed fluorescence polymers for non-doped solution processed organic light emitting diodes.Macromolecules,2019,522296-2303.DOI:10.1021/acs.macromol.9b00083http://doi.org/10.1021/acs.macromol.9b00083.
Zheng, Y.; Tee, H.T.; Wei, Y.; Wu, X.; Mezger, M.; Yan, S.; Landfester, K.; Wagener, K.; Wurm, F.R.; Lieberwirth, I.On the structure and thermal properties of precision polyphosphoesters.Macromolecules,2016,491321-1330.DOI:10.1021/acs.macromol.5b02581http://doi.org/10.1021/acs.macromol.5b02581.
Wen, G.; Ren, Z.; Sun, D.; Zhang, T.; Liu, L.; Yan, S.Synthesis of alternating copolysiloxane with terthiophene and perylenediimide derivative pendants for involatile WORM memory device.Adv. Funct. Mater.,2014,243446-3455.DOI:10.1002/adfm.201304004http://doi.org/10.1002/adfm.201304004.
Dong, H.; Li, H.; Wang, E.; Yan, S.; Zhang, J.; Yang, C.; Takahashi, I.; Nakashima, H.; Torimitsu, K.; Hu, W.Molecular orientation and field-effect transistors of a rigid rod conjugated polymer thin films.J. Phys. Chem. B,2009,1134176-4180.DOI:10.1021/jp811374hhttp://doi.org/10.1021/jp811374h.
Deng, L. F.; Zhang, X. X.; Zhou, D.; Tang, J. H.; Lei, J.; Li, J. F.; Li, Z. M.Better choice: linear long chains rather than branched ones to improve mechanical performance of polyethylene through generating shish-kebabs.Chinese J. Polym. Sci.,2020,38715-729.DOI:10.1007/s10118-020-2397-7http://doi.org/10.1007/s10118-020-2397-7.
Briseno, A. L.; Aizenberg, J.; Han, Y. J.; Penkala, R. A.; Moon, H.; Lovinger, A.J.; Kloc, C.; Bao, Z. Patterned growth of large oriented organic semiconductor single crystals on self-assembled monolayer templates.J. Am. Chem. Soc.,2005,12712164-12165.DOI:10.1021/ja052919uhttp://doi.org/10.1021/ja052919u.
Xin, R.; Zhang, J.; Sun, X.; Li, H.; Ren, Z.; Yan, S.Polymorphic behavior and phase transition of poly(1-butene) and its copolymers.Polymers,2018,10556DOI:10.3390/polym10050556http://doi.org/10.3390/polym10050556.
Brinkmann, M.Structure and morphology control in thin films of regioregular poly(3-hexylthiophene).J. Polym. Sci., Part B: Polym. Phys.,2011,491218-1233.DOI:10.1002/polb.22310http://doi.org/10.1002/polb.22310.
Hu, J.; Xin, R.; Hou, C.; Yan, S.Preparation and self-repairing of highly oriented structures of ultrathin polymer films.Macromol. Chem. Phys.,2019:1800478.
Li, S.; Sun, X.; Li, H.; Yan, S.The crystallization behavior of biodegradable polymer in thin film.Eur. Polym. J.,2018,102238-253.DOI:10.1016/j.eurpolymj.2018.03.029http://doi.org/10.1016/j.eurpolymj.2018.03.029.
Wittmann, J. C.; Smith, P.Highly oriented thin films of poly(tetrafluoroethylene) as a substrate for oriented growth of materials.Nature,1991,352414-417.DOI:10.1038/352414a0http://doi.org/10.1038/352414a0.
Brinkmann, M.; Wittmann, J. C.Orientation of regioregular poly(3-hexylthiophene) by directional solidification: a simple method to reveal the semicrystalline structure of a conjugated polymer.Adv. Mater.,2006,18860-863.DOI:10.1002/adma.200501838http://doi.org/10.1002/adma.200501838.
Brinkmann, M.; Rannou, P.Effect of molecular weight on the structure and morphology of oriented thin films of regioregular poly(3-hexylthiophene) grown by directional epitaxial solidification.Adv. Funct. Mater.,2007,17101-108.DOI:10.1002/adfm.200600673http://doi.org/10.1002/adfm.200600673.
Brinkmann, M.Directional epitaxial crystallization and tentative crystal structure of poly(9,9’-di-n-octyl-2,7-fluorene).Macromolecules,2007,407532-7541.DOI:10.1021/ma071390dhttp://doi.org/10.1021/ma071390d.
Hamidi-Sakr, A.; Schiefer, D.; Covindarassou, S.; Biniek, L.; Sommer, M.; Brinkmann, M.Highly oriented and crystalline films of a phenyl-substituted polythiophene prepared by epitaxy: Structural model and influence of molecular weight.Macromolecules,2016,493452-3462.DOI:10.1021/acs.macromol.6b00495http://doi.org/10.1021/acs.macromol.6b00495.
Zhou, H.; Yan, S.Can the structures of semicrystalline polymers be controlled using interfacial crystallographic interactions.Macromol. Chem. Phys.,2013,214639-653.DOI:10.1002/macp.201200530http://doi.org/10.1002/macp.201200530.
Li, Y.; Guo, Z.; Xue, M.; Yan, S.Epitaxial recrystallization ofiPBU in form II on an orientediPS film initially induced by oriented form IiPBu.Macromolecules,2019,524232-4239.DOI:10.1021/acs.macromol.9b00627http://doi.org/10.1021/acs.macromol.9b00627.
Liu, J.; Wang, J.; Li, H.; Shen, D.; Zhang, J.; Ozaki, Y.; Yan, S.Epitaxial crystallization of isotactic poly(methyl methacrylate) on highly oriented polyethylene.J. Phys. Chem. B,2006,110738-742.DOI:10.1021/jp053369phttp://doi.org/10.1021/jp053369p.
Dong, H.; Li, H.; Wang, E.; Wei, Z.; Xu, W.; Hu, W.; Yan, S.Ordering rigid rod conjugated polymer molecules for high performance photoswitchers.Langmuir,2008,2413241-13244.DOI:10.1021/la8026094http://doi.org/10.1021/la8026094.
Li, H.; Yan, S.Surface-induced polymer crystallization and the resultant structures and morphologies.Macromolecules,2011,44417-428.DOI:10.1021/ma1023457http://doi.org/10.1021/ma1023457.
Hu, J.; Xin, R.; Hou, C.; Yan, S.; Liu, J.Direct comparison of crystal nucleation activity of pcl on patterned substrates.Chinese J. Polym. Sci.,2019,37693-699.DOI:10.1007/s10118-019-2226-zhttp://doi.org/10.1007/s10118-019-2226-z.
Wittmann, J. C.; Lotz, B.Polymer decoration: The orientation of polymer folds as revealed by the crystallization of polymer vapors.J. Polym. Sci., Part B: Polym. Phys.,1985,23205-226.DOI:10.1002/pol.1985.180230119http://doi.org/10.1002/pol.1985.180230119.
Wittmann, J. C.; Lotz, B.Epitaxial crystallization of polymers on organic and polymeric substrates.Prog. Polym. Sci.,1990,15909-948.DOI:10.1016/0079-6700(90)90025-Vhttp://doi.org/10.1016/0079-6700(90)90025-V.
Brinkmann, M.; Hartmann, L.; Kayunkid, N.; Djurado, D.Understanding the structure and crystallization of regioregular poly(3-hexylthiophene) from the perspective of epitaxy.Adv. Polym. Sci.,2014,26583-106.
Yan, S.; Yang, D.; Petermann, J.Controlling factors for the occurrence of heteroepitaxy of polyethylene on highly oriented isotactic polypropylene.Polymer,1998,394569-4578.DOI:10.1016/S0032-3861(97)10137-9http://doi.org/10.1016/S0032-3861(97)10137-9.
Löhmann, A.-K.; Henze, T.; Thurn-Albrecht, T.Direct observation of prefreezing at the interface melt-solid in polymer crystallization.Proc. Natl. Acad. Sci. U. S. A.,2014,11117368-17372.DOI:10.1073/pnas.1408492111http://doi.org/10.1073/pnas.1408492111.
Tariq, M.; Dolynchuk, O.; Thurn-Albrecht, T.Effect of substrate interaction on thermodynamics of prefreezing.Macromolecules,2019,529140-9148.DOI:10.1021/acs.macromol.9b01499http://doi.org/10.1021/acs.macromol.9b01499.
Tariq, M.; Dolynchuk, O.; Thurn-Albrecht, T.Independent variation of transition temperature and prefrozen layer thickness at the prefreezing transition.J. Phys. Chem. C,2020,12426184-26192.DOI:10.1021/acs.jpcc.0c05760http://doi.org/10.1021/acs.jpcc.0c05760.
Flieger, A.-K.; Schulz, M.; Thurn-Albrecht, T.Interface-induced crystallization of polycaprolactone on graphiteviafirst-order prewetting of the crystalline phase.Macromolecules,2018,51189-194.DOI:10.1021/acs.macromol.7b02113http://doi.org/10.1021/acs.macromol.7b02113.
Dolynchuk, O.; Tariq, M.; Thurn-Albrecht, T.Phenomenological theory of first-order prefreezing.J. Phys. Chem. Lett.,2019,101942-1946.DOI:10.1021/acs.jpclett.9b00608http://doi.org/10.1021/acs.jpclett.9b00608.
Tariq, M.; Thurn-Albrecht, T.; Dolynchuk, O.Heterogeneous crystal nucleation from the melt in polyethylene oxide droplets on graphite: kinetics and microscopic structure.Crystals,2021,11924DOI:10.3390/cryst11080924http://doi.org/10.3390/cryst11080924.
Frank, C.; Rao, V.; Despotopoulou, M.; Pease, R.; Hinsberg, W.; Miller, R.; Rabolt, J.Structure in thin and ultrathin spin-cast polymer films.Science,1996,273912-915.DOI:10.1126/science.273.5277.912http://doi.org/10.1126/science.273.5277.912.
Despotopoulou, M.; Frank, C.; Miller, R.; Rabolt, J.Kinetics of chain organization in ultrathin poly(di-n-hexylsilane) films.Macromolecules,1996,295797-5804.DOI:10.1021/ma9511964http://doi.org/10.1021/ma9511964.
Schönherr, H.; Frank, C. Ultrathin films of poly(ethylene oxides) on oxidized silicon. 1.Spectroscopic characterization of film structure and crystallization kinetics.Macromolecules,2003,361188-1198.DOI:10.1021/ma020685ihttp://doi.org/10.1021/ma020685i.
Schönherr, H.; Frank, C. Ultrathin films of poly(ethylene oxides) on oxidized silicon. 2.In situstudy of crystallization and melting by hot stage AFM.Macromolecules,2003,361199-1208.DOI:10.1021/ma020686ahttp://doi.org/10.1021/ma020686a.
Prud’homme, R. E. Crystallization and morphology of ultrathin films of homopolymers and polymer blends.Prog. Polym. Sci.2016,54-55, 214-231.
Mareau, V. H.; Prud’homme, R. E.In-situhot stage atomic force microscopy study of poly(ε-caprolactone) crystal growth in ultrathin films.Macromolecules,2005,38398-408.DOI:10.1021/ma0482359http://doi.org/10.1021/ma0482359.
Mamun, A.; Mareau, V. H.; Chen, J.; Prud’homme, R. E.Morphologies of miscible PCL/PVC blends confined in ultrathin films.Polymer,2014,552179-2187.DOI:10.1016/j.polymer.2014.03.010http://doi.org/10.1016/j.polymer.2014.03.010.
Taguchi, K.; Miyaji, H.; Izumi, K.; Hoshino, A.; Miyamoto, Y.; Kokawa, R.Growth shape of isotactic polystyrene crystals in thin films.Polymer,2001,427443-7447.DOI:10.1016/S0032-3861(01)00215-4http://doi.org/10.1016/S0032-3861(01)00215-4.
Yan, C.; Li, H.; Zhang, J.; Ozaki, Y.; Shen, D.; Yan, D.; Shi, A. C.; Yan, S.Surface-induced anisotropic chain ordering of polycarprolactone on oriented polyethylene substrate: epitaxy and soft epitaxy.Macromolecules,2006,398041-8048.DOI:10.1021/ma061188vhttp://doi.org/10.1021/ma061188v.
Chang, H.; Zhang, J.; Li, L.; Wang, Z.; Yang, C.; Takahashi, I.; Ozaki, Y.; Yan, S.A study on the epitaxial ordering process of the polycaprolactone on the highly oriented polyethylene substrate.Macromolecules,2010,43362-366.DOI:10.1021/ma902235fhttp://doi.org/10.1021/ma902235f.
Zhang, Y.; Lu, Y.; Duan, Y.; Zhang, J.; Yan, S.; Shen, D.Reflection-absorption infrared spectroscopy investigation of the crystallization kinetics of poly(ethylene terephthalate) ultrathin films.J. Polym. Sci., Phys. Ed.,2004,424440-4447.DOI:10.1002/polb.20306http://doi.org/10.1002/polb.20306.
Zhang, Y.; Zhang, J.; Lu, Y.; Duan, Y.; Yan, S.; Shen, D.Glass transition temperature determination of poly(ethylene terephthalate) thin films using reflection-absorption FTIR.Macromolecules,2004,372532-2537.DOI:10.1021/ma035709fhttp://doi.org/10.1021/ma035709f.
Duan, Y.; Zhang, J.; Shen, D.; Yan, S.In situFTIR studies on the cold-crystallization process and multiple melting behavior of isotactic polystyrene.Macromolecules,2003,364874-4879.DOI:10.1021/ma034008fhttp://doi.org/10.1021/ma034008f.
Zhang, J.; Duan, Y.; Shen, D.; Yan, S.; Noda, I.; Ozaki, Y.2D FTIR spectroscopic studies on the structure change in the induction period of the cold-crystallization of isotactic polystyrene.Macromolecules,2004,373292-3298.DOI:10.1021/ma049910hhttp://doi.org/10.1021/ma049910h.
Petermann, J.; Gohil, R. M.A new method for the preparation of high modulus thermoplastic films.J. Mater. Sci.,1979,142260-2264.DOI:10.1007/BF00688435http://doi.org/10.1007/BF00688435.
Yan, S.Origin of oriented recrystallization of carbon coated pre-oriented ultra-thin polymer films.Macromolecules,2003,36339-345.DOI:10.1021/ma021387ohttp://doi.org/10.1021/ma021387o.
Li, H.; Liu, D.; Bu, X.; Zhou, Z.; Ren, Z.; Sun, X.; Reiter, R.; Yan, S.; Reiter, G.Formation of asymmetric leaf-shaped crystals in ultrathin films of oriented polyethylene molecules resulting from high-temperature relaxation and recrystallization.Macromolecules,2020,53346-354.DOI:10.1021/acs.macromol.9b02021http://doi.org/10.1021/acs.macromol.9b02021.
Zhou, H.; Jiang, S.; Yan, S.Epitaxial crystallization of poly(3-hexylthiophene) on a highly oriented polyethylene thin film from solution.J. Phys. Chem. B,2011,11513449-13454.DOI:10.1021/jp205755rhttp://doi.org/10.1021/jp205755r.
An, Y.; Jiang, S.; Yan, S.; Sun J.R.; Chen, X.Crystallization behavior of polylactide on highly oriented polyethylene thin films.Chinese J. Polym. Sci.,2011,29513-519.DOI:10.1007/s10118-010-1028-0http://doi.org/10.1007/s10118-010-1028-0.
Liu, J.; Li, H.; Yan, S.; Xiao, Q.; Petermann, J.Epitaxial- and trans-crystallization of PCL on the highly oriented PE substrates.Colloid Polym. Sci.,2003,281601-607.DOI:10.1007/s00396-002-0810-0http://doi.org/10.1007/s00396-002-0810-0.
Phillipson, K.; Hay, J. N.; Jenkins, M. J.Thermal analysis FTIR spectroscopy of poly(ε-caprolactone).Thermochimica Acta,2014,59574-82.DOI:10.1016/j.tca.2014.08.027http://doi.org/10.1016/j.tca.2014.08.027.
Massa, M. V.; Dalnoki-Veress, K.Homogeneous crystallization of poly(ethylene oxide) confined to droplets: the dependence of the crystal nucleation rate on length scale and temperature.Phys. Rev. Lett.,2004,92255509DOI:10.1103/PhysRevLett.92.255509http://doi.org/10.1103/PhysRevLett.92.255509.
Rubinstein, M.; Colby, R. H. inPolymer Physics. Oxford University Press: New York,2004.
Xu, F.; Zhang, P.; Zhang, J.; Yu, C.; Yan, D.; Mai, Y.Crystallization-driven two-dimensional self-assembly of amphiphilic PCL-b-PEO coated gold nanoparticles in aqueous solution.ACS Macro Lett.,2018,71062-1067.DOI:10.1021/acsmacrolett.8b00383http://doi.org/10.1021/acsmacrolett.8b00383.
Yuan, L.; Hamidi, N.; Smith, S.; Clemons, F.; Hamidi, A.; Tang, C.Molecular characterization of biodegradable natural resin acid-substituted polycaprolactone.Eur. Polym. J.,2015,6243-50.DOI:10.1016/j.eurpolymj.2014.10.023http://doi.org/10.1016/j.eurpolymj.2014.10.023.
Qiao, C.; Zhao, J.; Jiang, S.; Ji, X.; An, L.; Jiang, B.Crystalline morphology evolution in pcl thin films.J. Polym. Sci., Part B: Polym. Phys.,2005,431303-1309.DOI:10.1002/polb.20422http://doi.org/10.1002/polb.20422.
Jouault, N.; Moll, J. F.; Meng, D.; Windsor, K.; Ramcharan, S.; Kearney, C.; Kumar, S. K.Bound polymer layer in nanocomposites.ACS Macro Lett.,2013,2371-374.DOI:10.1021/mz300646ahttp://doi.org/10.1021/mz300646a.
Ma, Y.; Hu, W.; Reiter, G.Lamellar crystal orientations biased by crystallization kinetics in polymer thin films.Macromolecules,2006,395159-5164.DOI:10.1021/ma060798shttp://doi.org/10.1021/ma060798s.
Li, H.; Sun, X.; Wang, J.; Yan, S.; Schultz, J.M.On the development of special positive isotactic polypropylene spherulites.J. Polym. Sci., Phys. Ed.,2006,441114-1121.DOI:10.1002/polb.20761http://doi.org/10.1002/polb.20761.
0
Views
6
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution