1.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
jdding1@fudan.edu.cn
Scan for full text
Wei-Han Rao, Lin Yu, Jian-Dong Ding. Stride Strategy to Enable a Quasi-ergodic Search of Reaction Pathways Demonstrated by Ring-opening Polymerization of Cyclic Esters. [J]. Chinese Journal of Polymer Science 41(5):745-759(2023)
Wei-Han Rao, Lin Yu, Jian-Dong Ding. Stride Strategy to Enable a Quasi-ergodic Search of Reaction Pathways Demonstrated by Ring-opening Polymerization of Cyclic Esters. [J]. Chinese Journal of Polymer Science 41(5):745-759(2023) DOI: 10.1007/s10118-023-2930-6.
Ergodicity is essentially important for research of reaction mechanism, yet hard to achieve in the formalism of DFT calculation. The stride strategy helps to discover new landscapes involving the omitted reaction pathways and enabling the quasi-ergodic search of reaction pathways to obtain the globally minimum barrier. The strategy was employed to establish a satisfactory structure-reactivity relationship for ring-opening polymerization of cyclic monomers.
Coordination-insertion ring-opening polymerization (ROP) of cyclic esters is an industrial way to synthesize polyesters, which are widely applied in biomedical and environment-benign fields. However, the rate-determining transition state (TS) identified by the conventional reaction pathways (pathway A and pathway B) presented in the literature did not well describe the structure-reactivity relationship. The misidentification of the rate-determining TS might arise from the less ergodicity in the search of reaction pathways. Herein, we suggested a stride strategy based on the insight that even a partial double bond is rotatable at the catalysis temperature. As a result, we revealed a new reaction pathway, pathway C with a torsion transition state TSC2, by density functional theory (DFT). We also carried out kinetic experiments of ROP of D-lactide (D-LA), L-lactide (L-LA),ε,-caprolactone (CL), and,δ,-valerolactone (VL), using poly(ethylene glycol) as the initiator and stannous octoate as the catalyst. The excellent linearity between the calculated free energy barriers and logarithms of the experimental kinetic constants of the two kinds of lactide and lactone monomers, was established, validating the quasi-ergodic search of reaction pathways and the scaling predicted by transition state theory. The linearity was highly predictive for the other lactide and lactone monomers, demonstrated by glycolide (GA) and trimethylene urethane (TU).
Coordination-insertion mechanismRing-opening polymerizationDensity functional theoryBiodegradable polymerLactideLactoneCyclic ester
Farah, S.; Anderson, D. G.; Langer, R.Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review.Adv. Drug Deliv. Rev.,2016,107367-392.DOI:10.1016/j.addr.2016.06.012http://doi.org/10.1016/j.addr.2016.06.012.
Hillmyer, M. A.; Tolman, W. B.Aliphatic polyester block polymers: renewable, degradable, and sustainable.Acc. Chem. Res.,2014,472390-2396.DOI:10.1021/ar500121dhttp://doi.org/10.1021/ar500121d.
Ramot, Y.; Haim-Zada, M.; Domb, A. J.; Nyska, A.Biocompatibility and safety of PLA and its copolymers.Adv. Drug Deliv. Rev.,2016,107153-162.DOI:10.1016/j.addr.2016.03.012http://doi.org/10.1016/j.addr.2016.03.012.
Yuan, Yin.; Shi, X. D.; Gan, Z. H.Wang, F. S. Modification of porous PLGA microspheres by poly-l-lysine for use as tissue engineering scaffolds.Colloid. Surface B,2018,161162-168.DOI:10.1016/j.colsurfb.2017.10.044http://doi.org/10.1016/j.colsurfb.2017.10.044.
Cui, S. Q.; Yu, L.; Ding, J. D..Injectable thermogels based on block copolymers of appropriate amphiphilicity.Acta Polymerica Sinica (in Chinese),2018:997-1015.DOI:10.11777/j.issn1000-3304.2018.18084http://doi.org/10.11777/j.issn1000-3304.2018.18084.
Tang, X.; Chen, E. Y. X.Toward infinitely recyclable plastics derived from renewable cyclic esters.Chem,2019,5284-312.DOI:10.1016/j.chempr.2018.10.011http://doi.org/10.1016/j.chempr.2018.10.011.
Zhang, H. J. ; Zhang, W. Q. ; Qiu, H. ; Zhang, G. ; Li, X. ; Qi, H. P. ; Guo, J. Z. ; Qian, J. ; Shi, X. L. ; Gao, X. ; Shi, D. K. ; Zhang, D. Y. ; Gao, R. L. ; Ding, J. D..A biodegradable metal-polymer composite stent safe and effective on physiological and serum-containing biomimetic conditions.Adv. Healthc. Mater.,2022,112201740DOI:10.1002/adhm.202201740http://doi.org/10.1002/adhm.202201740.
Mehta, R.; Kumar, V.; Bhunia, H.; Upadhyay, S. N.Synthesis of poly (lactic acid): a review.J. Macromol. Sci., Polym. Rev.,2005,45325-349.DOI:10.1080/15321790500304148http://doi.org/10.1080/15321790500304148.
Cui, S. Q.; Yu, L.; Ding, J. D.Thermogelling of amphiphilic block copolymers in water: ABA type versus AB or BAB type.Macromolecules,2019,523697-3715.DOI:10.1021/acs.macromol.9b00534http://doi.org/10.1021/acs.macromol.9b00534.
Albertsson, A. C.; Varma, I. K.Recent developments in ring opening polymerization of lactones for biomedical applications.Biomacromolecules,2003,41466-1486.DOI:10.1021/bm034247ahttp://doi.org/10.1021/bm034247a.
Dijkstra, P. J.; Du, H.; Feijen, J.Single site catalysts for stereoselective ring-opening polymerization of lactides.Polym. Chem.,2011,2520-527.DOI:10.1039/C0PY00204Fhttp://doi.org/10.1039/C0PY00204F.
Zhang, X.; Fevre, M.; Jones, G. O.; Waymouth, R. M.Catalysis as an enabling science for sustainable polymers.Chem. Rev.,2018,118839-885.DOI:10.1021/acs.chemrev.7b00329http://doi.org/10.1021/acs.chemrev.7b00329.
Bartnikowski, M.; Dargaville, T. R.; Ivanovski, S.; Hutmacher, D. W.Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment.Prog. Polym. Sci.,2019,961-20.DOI:10.1016/j.progpolymsci.2019.05.004http://doi.org/10.1016/j.progpolymsci.2019.05.004.
Chen, W. H.; Chen, Q. W.; Chen, Q.; Cui, C. Y; Duan, S.; Kang, Y. Y.; Liu, Y.; Muhammad, W.; Shao, S. Q.; Tang, C. Q.; Wang, J. Q.; Wang, L.; Xiong, M. H.; Yin, L. C.; Zhang, K.; Zhang, Z. Z.; Zhen, X.; Feng, J.; Gao, C. Y.; Gu, Z.; He, C. L.; Ji, J.; Jiang, X. Q.; Liu, W. G.; Liu, Z.; Peng, H. S.; Shen, Y. Q.; Shi, L. Q.; Sun, X. M.; Wang, H.; Wang, J.; Xiao, H. H.; Xu, F. J.; Zhong, Z. Y.; Zhang, X. Z.; Chen, X. S.Biomedical polymers: synthesis, properties, and applications.Sci. China Chem.,2022,651010-1075.DOI:10.1007/s11426-022-1243-5http://doi.org/10.1007/s11426-022-1243-5.
Wu, J. C.; Yu, T. L.; Chen, C. T.; Lin, C. C.Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters.Coord. Chem. Rev.,2006,250602-626.DOI:10.1016/j.ccr.2005.07.010http://doi.org/10.1016/j.ccr.2005.07.010.
Platel, R. H.; Hodgson, L. M.; Williams, C. K.Biocompatible initiators for lactide polymerization.Polym. Rev.,2008,4811-63.DOI:10.1080/15583720701834166http://doi.org/10.1080/15583720701834166.
Dutta, S.; Hung, W. C.; Huang, B. H.; Lin, C. C.Recent developments in metal-catalyzed ring-opening polymerization of lactides and glycolides: preparation of polylactides, polyglycolide, and poly(lactide-co-glycolide).Adv. Polym. Sci.,2012,245219-283.DOI:10.1007/12_2011_156http://doi.org/10.1007/12_2011_156.
Kowalski, A.; Libiszowski, J.; Biela, T.; Cypryk, M.; Duda, A.; Penczek, S.Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate. Polymerization ofε-caprolactone and L,L-lactide co-initiated with primary amines.Macromolecules,2005,388170-8176.DOI:10.1021/ma050752jhttp://doi.org/10.1021/ma050752j.
Bednarek, M.Branched aliphatic polyesters by ring-opening (co)polymerization.Prog. Polym. Sci.,2016,5827-58.DOI:10.1016/j.progpolymsci.2016.02.002http://doi.org/10.1016/j.progpolymsci.2016.02.002.
Fuoco, T.; Pappalardo, D.Aluminum alkyl complexes bearing salicylaldiminato ligands: versatile initiators in the ring-opening polymerization of cyclic esters.Catalysts,2017,764DOI:10.3390/catal7020064http://doi.org/10.3390/catal7020064.
Jiang, H. J.; He, J. P.; Liu, J. P.; Yang, Y. L.Synthesis and characterization of poly(ethylene-co-vinyl alcohol)-graft-poly(ε-caprolactone).Polym. J.,2002,34682-686.DOI:10.1295/polymj.34.682http://doi.org/10.1295/polymj.34.682.
Xiang, S.; Zhou, D. D.; Feng, L. D.; Bian, X. C.; Li, G.; Chen, X. S.; Wang, T. C.Influence of chain architectures on crystallization behaviors of PLLA block in PEG/PLLA block copolymers.Chinese J. Polym. Sci.,2019,37258-267.DOI:10.1007/s10118-019-2202-7http://doi.org/10.1007/s10118-019-2202-7.
Cui, S. Q.; Chen, L.; Yu, L.; Ding, J. D.Synergism among polydispersed amphiphilic block copolymers leading to spontaneous physical hydrogelation upon heating.Macromolecules,2020,537726-7739.DOI:10.1021/acs.macromol.0c01430http://doi.org/10.1021/acs.macromol.0c01430.
Cai, C. Y.; Tang, J. Y. Zhang, Y.; Rao, W. H.; Cao, D. L. G.; Guo, W.; Yu, L.; Ding, J. D..Intelligent paper-free sprayable skin mask based on anin situformed Janus hydrogel of an environment-friendly polymer.Adv. Healthc. Mater.,2022,112102654DOI:10.1002/adhm.202102654http://doi.org/10.1002/adhm.202102654.
Peng, Y. M.; Liu, Q. J.; He, T. L.; Ye, K.; Yao, X.; Ding, J. D.Degradation rate affords a dynamic cue to regulate stem cells beyond varied matrix stiffness.Biomaterials,2018,178467-480.DOI:10.1016/j.biomaterials.2018.04.021http://doi.org/10.1016/j.biomaterials.2018.04.021.
Lecomte, P.; Riva, R.; Jérôme, C.; Jérôme, R.Macromolecular engineering of biodegradable polyesters by ring-opening polymerization and ‘click’ chemistry.Macromol. Rapid Commun.,2008,29982-997.DOI:10.1002/marc.200800174http://doi.org/10.1002/marc.200800174.
Chen, T. T.; Cai, T. J.; Jin, Q.; Ji, J.Design and fabrication of functional polycaprolactone.e-Polymers,2015,153-13.DOI:10.1515/epoly-2014-0158http://doi.org/10.1515/epoly-2014-0158.
d'Arcy, R.; Burke, J.; Tirelli, N.Branched polyesters: preparative strategies and applications.Adv. Drug Deliv. Rev.,2016,10760-81.DOI:10.1016/j.addr.2016.05.005http://doi.org/10.1016/j.addr.2016.05.005.
Xu, Y. C.; Ren, W. M.; Zhou, H.; Gu, G. G.; Lu, X. B.Functionalized polyesters with tunable degradability prepared by controlled ring-opening (co)polymerization of lactones.Macromolecules,2017,503131-3142.DOI:10.1021/acs.macromol.7b00239http://doi.org/10.1021/acs.macromol.7b00239.
Eyring, H.The activated complex in chemical reactions.J. Chem. Phys.,1935,3107-115.DOI:10.1063/1.1749604http://doi.org/10.1063/1.1749604.
Evans, M. G.; Polanyi, M.Some applications of the transition state method to the calculation of reaction velocities, especially in solution.Trans. Faraday Soc.,1935,31875-894.DOI:10.1039/tf9353100875http://doi.org/10.1039/tf9353100875.
Laidler, K. J.; King, M. C.The development of transition-state theory.J. Phys. Chem.,1983,872657-2664.DOI:10.1021/j100238a002http://doi.org/10.1021/j100238a002.
Polanyi, J. C.Some concepts in reaction dynamics.Science,1987,236680-690.DOI:10.1126/science.236.4802.680http://doi.org/10.1126/science.236.4802.680.
Orio M.; Pantazis, D. A.Neese, F. Density functional theory.Photosynth. Res.,2009,102443-453.DOI:10.1007/s11120-009-9404-8http://doi.org/10.1007/s11120-009-9404-8.
Shang, C.; Liu, Z. P.Constrained broyden dimer method with bias potential for exploring potential energy surface of multistep reaction process.J. Chem. Theory Comput.,2012,82215-2222.DOI:10.1021/ct300250hhttp://doi.org/10.1021/ct300250h.
Bo, X. X.; Zheng, H. F.; Xin, J. F.; Ding, Y. H.A kinetically persistent isomer found for pentazole: a global potential energy surface survey.Chem. Commun.,2019,552597-2600.DOI:10.1039/C8CC09626Khttp://doi.org/10.1039/C8CC09626K.
Wu, F. L; Huang, Y. D.; Yu, F. Z.; Li, Z. H.; Ding, C. F.Effect of transition-metal Ions on the conformation of encephalin investigated by hydrogen/deuterium exchange and theoretical calculations.J. Phys. Chem. B,2020,124101-109.DOI:10.1021/acs.jpcb.9b09919http://doi.org/10.1021/acs.jpcb.9b09919.
Han, J. R.; Wu, F. L.; Yang, S. T.; Wu, X. N.; Tang, K. Q.; Li, Z. H.; Ding, C. F.Conformation changes of enkephalin in coordination with Pb2+Investigated by gas phase hydrogen/deuterium exchange mass spectrometry combined with theoretical calculations.Chem. Res. Chin. Univ.,2022,38572-578.DOI:10.1007/s40242-021-1069-7http://doi.org/10.1007/s40242-021-1069-7.
Zhao, Y.; Truhlar, D. G.Density functionals with broad applicability in chemistry.Acc. Chem. Res.,2008,41157-167.DOI:10.1021/ar700111ahttp://doi.org/10.1021/ar700111a.
Marlier, E. E.; Macaranas, J. A.; Marell, D. J.; Dunbar, C. R.; Johnson, M. A.; DePorre, Y.; Miranda, M. O.; Neisen, B. D.; Cramer, C. J.; Hillmyer, M. A.; Tolman, W. B.Mechanistic studies ofε-caprolactone polymerization by (salen) alor complexes and a predictive model for cyclic ester polymerizations.ACS Catal.,2016,61215-1224.DOI:10.1021/acscatal.5b02607http://doi.org/10.1021/acscatal.5b02607.
Nifant’ev, I. E.; Ivchenko, P.Coordination ring-opening polymerization of cyclic esters: A critical overview of DFT modeling and visualization of the reaction mechanisms.Molecules,2019,244117DOI:10.3390/molecules24224117http://doi.org/10.3390/molecules24224117.
Allen, M. P.; Tildesley, D. J.Computer simulation of liquids. Oxford University Press,2017.
Binder, K. ; Heermann, D. W.Monte Carlo simulation in statistical physics. Springer-Verlag Berlin,2010.
Xu, G. Q.; Ding, J. D.; Yang, Y. L.Monte Carlo simulation of self-avoiding lattice chains subject to simple shear flow. I. Model and simulation algorithm.J. Chem. Phys.,1997,1074070DOI:10.1063/1.474763http://doi.org/10.1063/1.474763.
Luo, Z. L.; Ding, J. D.; Zhou, Y. Q.Temperature-dependent folding pathways of Pin1 WW domain: an all-atom molecular dynamics simulation of a Gō model.Biophys. J.,2007,932152-2161.DOI:10.1529/biophysj.106.102095http://doi.org/10.1529/biophysj.106.102095.
Cui, S.; Yu, Q. L.; Ding, J. D.Semi-bald micelles and corresponding percolated micelle networks of thermogels.Macromolecules,2018,516405-6420.DOI:10.1021/acs.macromol.8b01014http://doi.org/10.1021/acs.macromol.8b01014.
Cui, S. Q.; Yu, L.; Ding, J. D.Strategy of “block blends” to generate polymeric thermogels versus that of one-component block copolymer.Macromolecules,2020,5311051-11064.DOI:10.1021/acs.macromol.0c02488http://doi.org/10.1021/acs.macromol.0c02488.
Gao, H. B.; Li, H.; Zhang, X. Q.; Wang, X. H.; Li, C. Y.; Luo, M. B.Computer simulation study on adsorption and conformation of polymer chains driven by external force.Chinese J. Polym. Sci.,2021,39258-266.DOI:10.1007/s10118-020-2491-xhttp://doi.org/10.1007/s10118-020-2491-x.
Ma, R.; Xu, D.; Luo, C. F..Effect of crystallization and entropy contribution upon the mechanical response of polymer nano-fibers: a steered molecular dynamics study.Chinese J. Polym. Sci.,2023,41465-474.DOI:10.1007/s10118-022-2817-yhttp://doi.org/10.1007/s10118-022-2817-y.
Jeong, B.; Bae, Y. H.; Lee, D. S.; Kim, S. W.Biodegradable block copolymers as injectable drug-delivery systems.Nature,1997,388860-862.DOI:10.1038/42218http://doi.org/10.1038/42218.
Yu, L.; Ding, J. D.Injectable hydrogels as unique biomedical materials.Chem. Soc. Rev.,2008,371473-1481.DOI:10.1039/b713009khttp://doi.org/10.1039/b713009k.
Tabthong, S.; Nanok, T.; Sumrit, P.; Kongsaeree, P.; Prabpai, S.; Chuawong, P.; Hormnirun, P.Bis(pyrrolidene) schiff base aluminum complexes as isoselective-biased initiators for the controlled ring-opening polymerization of rac-lactide: experimental and theoretical studies.Macromolecules,2015,486846-6861.DOI:10.1021/acs.macromol.5b01381http://doi.org/10.1021/acs.macromol.5b01381.
Hong, M.; Chen, E. Y. X.Completely recyclable biopolymers with linear and cyclic topologiesviaring-opening polymerization ofγ-butyrolactone.Nat. Chem.,2016,842-49.DOI:10.1038/nchem.2391http://doi.org/10.1038/nchem.2391.
Gesslbauer, S.; Savela, R.; Chen, Y.; White, A. J. P.; Romain, C.Exploiting noncovalent interactions for room-temperature heteroselective rac-lactide polymerization using aluminum catalysts.ACS Catal.,2019,97912-7920.DOI:10.1021/acscatal.9b00875http://doi.org/10.1021/acscatal.9b00875.
Rao, W. H.; Cai, C. Y.; Tang, J. Y.; Wei, Y. M.; Gao, C. Y.; Yu, L.; Ding, J. D.Coordination insertion mechanism of ring-opening polymerization of lactide catalyzed by stannous octoate.Chin. J. Chem.,2021,391965-1974.DOI:10.1002/cjoc.202000519http://doi.org/10.1002/cjoc.202000519.
Zhao, Y.; Truhlar, D. G.The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals.Theor. Chem. Acc.,2008,120215-241.DOI:10.1007/s00214-007-0310-xhttp://doi.org/10.1007/s00214-007-0310-x.
Goerigk, L.; Grimme, S.A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions.Phys. Chem. Chem. Phys.,2011,136670-6688.DOI:10.1039/c0cp02984jhttp://doi.org/10.1039/c0cp02984j.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H.A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.J. Chem. Phys.,2010,132154104DOI:10.1063/1.3382344http://doi.org/10.1063/1.3382344.
Weigend, F.; Ahlrichs, R.Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy.Phys. Chem. Chem. Phys.,2005,73297-3305.DOI:10.1039/b508541ahttp://doi.org/10.1039/b508541a.
Gaussian 09, Revision D. 01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgometry, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc. Wallingford CT,2016.
Tian Lu, Molclus program, Version 1.9. 9.9, http://www.keinsci.com/research/molclus.html
Lawan, N.; Muangpil, S.; Kungwan, N.; Meepowpan, P.; Lee, V. S.; Punyodom, W.Tin (IV) alkoxide initiator design for poly(d-lactide) synthesis using DFT calculations.Comput. Theor. Chem.,2013,1020121-126.DOI:10.1016/j.comptc.2013.07.045http://doi.org/10.1016/j.comptc.2013.07.045.
Della Monica, F.; Luciano, E.; Roviello, G.; Grassi, A.; Milione, S.; Capacchione, C.Group 4 metal complexes bearing thioetherphenolate ligands. coordination chemistry and ring-opening polymerization catalysis.Macromolecules,2014,472830-2841.DOI:10.1021/ma5003358http://doi.org/10.1021/ma5003358.
Chang, M. C.; Lu, W. Y.; Chang, H. Y.; Lai, Y. C.; Chiang, M. Y.; Chen, H. Y.; Chen, H. Y.Comparative study of aluminum complexes bearing N,O- and N,S-Schiff base in ring-opening polymerization ofε-caprolactone and L-lactide.Inorg. Chem.,2015,5411292-11298.DOI:10.1021/acs.inorgchem.5b01858http://doi.org/10.1021/acs.inorgchem.5b01858.
Ligny, R.; Hänninen, M. M.; Guillaume, S. M.; Carpentier, J. F.Highly syndiotactic or isotactic polyhydroxyalkanoates by ligand-controlled yttrium-catalyzed stereoselective ring-opening polymerization of functional racemicβ-lactones.Angew. Chem. Int. Ed.,2017,12910524-10529.DOI:10.1002/ange.201704283http://doi.org/10.1002/ange.201704283.
Nifant'ev, I. E.; Shlyakhtin, A. V.; Bagrov, V. V.; Minyaev, M. E.; Churakov, A. V.; Karchevsky, S. G.; Birin, K. P.; Ivchenko, P. V.Mono-BHT heteroleptic magnesium complexes: synthesis, molecular structure and catalytic behavior in the ring-opening polymerization of cyclic esters.Dalton Trans.,2017,4612132-12146.DOI:10.1039/C7DT02469Jhttp://doi.org/10.1039/C7DT02469J.
Jitonnom, J.; Molloy, R.; Punyodom, W.; Meelua, W.Theoretical studies on aluminum trialkoxide-initiated lactone ring-opening polymerizations: roles of alkoxide substituent and monomer ring structure.Comput. Theor. Chem.,2016,109725-32.DOI:10.1016/j.comptc.2016.10.009http://doi.org/10.1016/j.comptc.2016.10.009.
Stevels, W. M.; Ankoné, M. J.; Dijkstra, P. J.; Feijen, J..Kinetics and mechanism ofε-caprolactone polymerization using yttrium alkoxides as initiators.Macromolecules,1996,298296-8303.DOI:10.1021/ma960701+http://doi.org/10.1021/ma960701+.
O'Keefe, B. J.; Hillmyer, M. A.; Tolman, W. B.Polymerization of lactide and related cyclic esters by discrete metal complexes.J. Chem. Soc., Dalton Trans.,2001,152215-2224.DOI:10.1039/b104197phttp://doi.org/10.1039/b104197p.
Chen, E. Y. X.Coordination polymerization of polar vinyl monomers by single-site metal catalysts.Chem. Rev.,2009,1095157-5214.DOI:10.1021/cr9000258http://doi.org/10.1021/cr9000258.
Penczek, S.; Cypryk, M.; Duda, A.; Kubisa, P.; Slomkowski, S.Living ring-opening polymerizations of heterocyclic monomers.Prog. Polym. Sci.,2007,32247-282.DOI:10.1016/j.progpolymsci.2007.01.002http://doi.org/10.1016/j.progpolymsci.2007.01.002.
Neffgen, S.; Keul, H.; Höcker, H.Ring-opening polymerization of cyclic urethanes and ring-closing depolymerization of the respective polyurethanes.Macromol. Rapid Commun.,1996,17373-382.DOI:10.1002/marc.1996.030170602http://doi.org/10.1002/marc.1996.030170602.
Wu, D. C.; Xu, F.Sun, B. Fu, R. W.; He, H. K.; Matyjaszewski, K. Design and preparation of porous polymers.Chem. Rev.,2012,1123959-4015.DOI:10.1021/cr200440zhttp://doi.org/10.1021/cr200440z.
Baumgartner, R.Fu, H. L.; Song, Z. Y.; Lin, Y.; Cheng, J. J. Cooperative polymerization ofα-helices induced by macromolecular architecture.Nat. Chem.,2017,9614-622.DOI:10.1038/nchem.2712http://doi.org/10.1038/nchem.2712.
Xia, Y. C.; Song, Z. Y.; Tan, Z. Z.; Xue, T. R.; Wei, S. Q.; Zhu, L. Y.; Yang, Y. F.; Fu, H. L.; Jiang, Y. J.; Lin, Y.; Ferguson, A. L.; Cheng, J. J.Accelerated polymerization ofN-carboxyanhydrides catalyzed by crown ether.Nat. Commun.,2021,12732DOI:10.1038/s41467-020-20724-whttp://doi.org/10.1038/s41467-020-20724-w.
Yu, X. Y.; Li, G. H.; Zheng, Y. K.; Gao, J. M.; Fu, Y.; Wang, Q. S.; Pan, X. G.; Huang, L.; Ding, J. D..“Invisible” orthodontics by polymeric “clear” aligners molded by 3D-printed personalized dental models.Regen. Biomater.,2022,9rbac007DOI:10.1093/rb/rbac007http://doi.org/10.1093/rb/rbac007.
Gao, J. M.; Ding, X. Q.; Yu, X. Y.; Chen, X. B.; Zhang, X. Y.; Cui, S. Q.; Shi, J. Y.; Chen, J.; Yu, L.; Chen, S. Y.; Ding, J. D.Cell-free bilayered porous scaffolds for osteochondral regeneration fabricated by continuous 3D-printing using nascent physical hydrogel as ink.Adv. Healthc. Mater.,2021,101-13.DOI:10.11648/j.am.20211001.11http://doi.org/10.11648/j.am.20211001.11.
Wang, F. S.; Zhao, X. J.; Cao, Y.; Qian, R. Y.A comparison of polyacetylenes prepared with various catalyst systems.Chinese J. Polym. Sci.,1985,2180-184.
Engle, K. M.; Mei, T. S.; Wasa, M.; Yu, J. Q.Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions.Acc. Chem. Res.,2012,45788-802.DOI:10.1021/ar200185ghttp://doi.org/10.1021/ar200185g.
Romero, N. A.; Nicewicz, D. A.Organic photoredox catalysis.Chem. Rev.,2016,11610075-10166.DOI:10.1021/acs.chemrev.6b00057http://doi.org/10.1021/acs.chemrev.6b00057.
Liu, L. C.; Corma, A.Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles.Chem. Rev.,2018,1184981-5079.DOI:10.1021/acs.chemrev.7b00776http://doi.org/10.1021/acs.chemrev.7b00776.
Cao, D. L. G.; Guo, W.; Cai, C. Y.; Tang, J. Y.; Rao, W. H.; Wang, Y.; Wang, Y. B.; Yu, L.; Ding, J. D.Unified therapeutic-prophylactic vaccine demonstrated with a postoperative filler gel to prevent tumor recurrence and metastasis.Adv. Funct. Mater.,2022,322206084DOI:10.1002/adfm.202206084http://doi.org/10.1002/adfm.202206084.
Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K.Understanding catalytic activity trends in the oxygen reduction reaction.Chem. Rev.,2018,1182302-2312.DOI:10.1021/acs.chemrev.7b00488http://doi.org/10.1021/acs.chemrev.7b00488.
Yu, H. Y.; Wang, J.; Shao, J. W.; Chen, D.; Wang, S. C.; Wang, L.; Yang, W. T.Controlled radical polymerization of styrene mediated by xanthene-9-thione and its derivatives.Chinese J. Polym. Sci.,2018,361303-1311.DOI:10.1007/s10118-018-2153-4http://doi.org/10.1007/s10118-018-2153-4.
Yu, Y.; Wang, X. L.; Zhu, Y.; He, Y. N.; Xue, H. R.; Ding, J. D.Is polydopamine beneficial for cells on the modified surface.Regen. Biomater.,2022,9rbac078DOI:10.1093/rb/rbac078http://doi.org/10.1093/rb/rbac078.
Lu, X. B.; Ren, B. H.Partners in epoxide copolymerization catalysis: approach to high activity and selectivity.Chinese J. Polym. Sci.,2022,401331-1348.DOI:10.1007/s10118-022-2744-yhttp://doi.org/10.1007/s10118-022-2744-y.
Hammer, B.; Norskov, J. K.Why gold is the noblest of all the metals.Nature,1995,376238-240.DOI:10.1038/376238a0http://doi.org/10.1038/376238a0.
Michaelides, A.; Liu, Z. P.; Zhang, C. J.; Alavi, A.; King, D. A.; Hu, P.Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces.J. Am. Chem. Soc.,2003,1253704-3705.DOI:10.1021/ja027366rhttp://doi.org/10.1021/ja027366r.
Calle-Vallejo, F.; Loffreda, D.; Koper, M. T. M.; Sautet, P.Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers.Nat. Chem.,2015,7403-410.DOI:10.1038/nchem.2226http://doi.org/10.1038/nchem.2226.
Tran, K.; Ulissi, Z. W.Active learning across intermetallics to guide discovery of electrocatalysts for CO2reduction and H2evolution.Nat. Catal.,2018,1696-703.DOI:10.1038/s41929-018-0142-1http://doi.org/10.1038/s41929-018-0142-1.
Lopato, E. M.; Eikey, E. A.; Simon, Z. C.Back, S.; Tran, K.; Lewis, J.; Kowalewski, J. F.; Yazdi, S.; Kitchin, J. R.; Ulissi, Z. W.; Millstone, J. E.; Bernhard, S. Parallelized screening of characterized and DFT-modeled bimetallic colloidal cocatalysts for photocatalytic hydrogen evolution.ACS Catal.,2020,104244-4252.DOI:10.1021/acscatal.9b05404http://doi.org/10.1021/acscatal.9b05404.
Shen, T. H.; Yang, Y. Q.; Xu, X.Structure-reactivity relationship for nano-catalysts in the hydrogenation/dehydrogenation controlled reaction systems.Angew. Chem. Int. Ed.,2021,13326546-26549.DOI:10.1002/ange.202109942http://doi.org/10.1002/ange.202109942.
Essa, D.; Kondiah, P. P.; Choonara, Y. E.; Pillay, V..The design of poly(lactide-co-glycolide) nanocarriers for medical applications.Front. Bioeng. Biotech.,2020,848DOI:10.3389/fbioe.2020.00048http://doi.org/10.3389/fbioe.2020.00048.
Xu, X.; Gao, J. m.; Liu, S. Y.; Chen, L.Chen, M.; Yu, X. Y.; Ma, N.; Zhang, J.; Chen, X. B.; Zhong, L. S.; Yu, L.; Xu, L. M.; Guo, Q. Y.; Ding, J. D. Magnetic resonance imaging for non-invasive clinical evaluation of normal and regenerated cartilage.Regen. Biomater.,2021,8rbab038DOI:10.1093/rb/rbab038http://doi.org/10.1093/rb/rbab038.
Wang, G.; Gao, C. Y.; Xiao, B. H.; Zhang, J.Jiang, X. Y.; Wang, Q. S.; Guo, J. Z.; Zhang, D. Y.; Liu, J. X.; Xie, Y. H.; Shu, C. Ding, J. D. Research and clinical translation of trilayer stent-graft of expanded polytetrafluoroethylene for interventional treatment of aortic dissection.Regen. Biomater.,2022,9rbac049DOI:10.1093/rb/rbac049http://doi.org/10.1093/rb/rbac049.
Wang, R. Z.; Huang, S.; Zhang, Q. Y.; Yu, X. S.; Hong, K. Z.; Cao, J. R.; Xiao, H.; Wang, Y.; Shuai, X. T.Construction of magnetic resonance imaging visible polymeric vector for efficient tumor targeted siRNA delivery.Chinese J. Polym. Sci.,2022,401071-1079.DOI:10.1007/s10118-022-2794-1http://doi.org/10.1007/s10118-022-2794-1.
Gao, C. Y.; Wang, G.; Wang, L.; Wang, Q. S.; Wang, H. C.; Yu, L.; Liu, J. X.; Ding, J. D.A biosurfactant-containing TSD strategy to modify bovine pericardial bioprosthetic valves for anticalcification.Chinese J. Polym. Sci.,2023,4151-66.DOI:10.1007/s10118-022-2843-9http://doi.org/10.1007/s10118-022-2843-9.
Cao, D. L. G.; Ding, J. D.Recent advances in regenerative biomaterials.Regen. Biomater.,2022,9rbac098DOI:10.1093/rb/rbac098http://doi.org/10.1093/rb/rbac098.
0
Views
10
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution