1.State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
rhdeng@hust.edu.cn(R.H.D.)
jtzhu@mail.hust.edu.cn(J.T.Z.)
Scan for full text
Jing-Ye Liu, Hao-Rui Song, Mian Wang, et al. Asymmetric Mesoporous Carbon Microparticles by 3D-Confined Self-Assembly of Block Copolymer/Homopolymer Blends and Selective Carbonization. [J]. Chinese Journal of Polymer Science 41(5):787-793(2023)
Jing-Ye Liu, Hao-Rui Song, Mian Wang, et al. Asymmetric Mesoporous Carbon Microparticles by 3D-Confined Self-Assembly of Block Copolymer/Homopolymer Blends and Selective Carbonization. [J]. Chinese Journal of Polymer Science 41(5):787-793(2023) DOI: 10.1007/s10118-023-2935-1.
A method is developed to prepare asymmetric mesoporous carbon microparticles by neutral interface-guided 3D-confined self-assembly of block copolymer/homopolymer blends, followed by a self-templated selective direct carbonization strategy.
Shape control of mesoporous carbon microparticles (MCMPs) is of critical importance; in particular, asymmetric shapes that can yield unique properties have attracted significant attention. However, the tailored synthesis of asymmetric MCMPs with ordered structures remains challenging. Herein, we report a facile route to prepare asymmetric MCMPs by dynamic neutral interface-guided 3D-confined self-assembly (3D-CSA) of block copolymer/homopolymer (BCP/,h,P) blends, followed by a self-templated selective direct carbonization strategy. BCP/,h,P Janus microparticles with ordered hierarchical mesostructures were prepared with emulsion solvent evaporation-induced 3D-CSA. The continuous phase of BCP domains was then crosslinked. Composite asymmetric MCMPs are successfully generated after selective carbonization of the crosslinked continuous phase. This method allows tuning the shape of MCMPs easily by varying the blending ratio of BCP/,h,P. The composite asymmetric MCMPs combine the advantages of asymmetric shape, ordered structure, high specific surface area, chemical inertness and thermal stability and could provide great possibilities for applications in catalysis, drug delivery, energy conversion and storage.
3D-confined self-assemblyBlock copolymerPhase separationMesoporous carbon spheresJanus
Liu, J.; Wickramaratne, N. P.; Qiao, S. Z.; Jaroniec, M.Molecular-based design and emerging applications of nanoporous carbon spheres.Nat. Mater.,2015,14763-774.DOI:10.1038/nmat4317http://doi.org/10.1038/nmat4317.
Liu, J.; Qiao, S.Z.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D.; Lu, G. Q.Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres.Angew. Chem. Int. Ed.,2011,505947-5951.DOI:10.1002/anie.201102011http://doi.org/10.1002/anie.201102011.
Liu, C.; Yu, M. H.; Li, Y.; Li, J. S.; Wang, J.; Yu, C. Z.; Wang, L. J.Synthesis of mesoporous carbon nanoparticles with large and tunable pore sizes.Nanoscale,2015,711580-11590.DOI:10.1039/C5NR02389Khttp://doi.org/10.1039/C5NR02389K.
Pan, P.; Zhang, T.; Yue, Q.; Elzatahry, A. A.; Alghamdi, A.; Cheng, X. W.; Deng, Y. H.Interface coassembly and polymerization on magnetic colloids: toward core-shell functional mesoporous polymer microspheres and their carbon derivatives.Adv. Sci.,2020,72000443DOI:10.1002/advs.202000443http://doi.org/10.1002/advs.202000443.
Wang, C. W.; Wang, Y.; Graser, J.; Zhao, R.; Gao, F.; O’Connell, M. J.Solution-based carbohydrate synthesis of individual solid, hollow, and porous carbon nanospheres using spray pyrolysis.ACS Nano,2013,711156-11165.DOI:10.1021/nn4048759http://doi.org/10.1021/nn4048759.
Han, X.; Zhang, T. Y.; Wang, X. H.; Zhang, Z. D.; Li, Y. P.; Qin, Y. J.; Wang, B. Q.; Han, A. J.; Liu, J. F.Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules.Nat. Commun.,2022,132900DOI:10.1038/s41467-022-30520-3http://doi.org/10.1038/s41467-022-30520-3.
Fang, Y.; Zheng, G. F.; Yang, J. P.; Tang, H. S.; Zhang, Y. F.; Kong, B.; Lv, Y. Y.; Xu, C. J.; Asiri, A.M.; Zi, J.; Zhang, F.; Zhao, D. Y.Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery.Angew. Chem. Int. Ed.,2014,535366-5370.DOI:10.1002/anie.201402002http://doi.org/10.1002/anie.201402002.
Zhang, L. H.; He, B.; Li, W.C.; Lu, A.H.Surface free energy-induced assembly to the synthesis of grid-like multicavity carbon spheres with high level in-cavity encapsulation for lithium-sulfur cathode.Adv. Energy Mater.,2017,71701518DOI:10.1002/aenm.201701518http://doi.org/10.1002/aenm.201701518.
Tang, J.; Wang, J.; Shrestha, L. K.; Hossain, M. S. A.; Alothman, Z. A.; Yamauchi, Y.; Ariga, K.Activated porous carbon spheres with customized mesopores through assembly of diblock copolymers for electrochemical capacitor.ACS Appl. Mater. Interfaces,2017,918986-18993.DOI:10.1021/acsami.7b04967http://doi.org/10.1021/acsami.7b04967.
Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K.T.; Bein, T.; Nazar, L.F.Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries.Angew. Chem. Int. Ed.,2012,513591-3595.DOI:10.1002/anie.201107817http://doi.org/10.1002/anie.201107817.
Fang, Y.; Gu, D.; Zou, Y.; Wu, Z. X.; Li, F. Y.; Che, R. C.; Deng, Y. H.; Tu, B.; Zhao, D. Y.A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size.Angew. Chem. Int. Ed.,2010,497987-7991.DOI:10.1002/anie.201002849http://doi.org/10.1002/anie.201002849.
Liang, J.; Kou, H.; Ding, S. J.Complex hollow bowl-like nanostructures: synthesis, application, and perspective.Adv. Funct. Mater.,2021,312007801DOI:10.1002/adfm.202007801http://doi.org/10.1002/adfm.202007801.
Ku, K. H.; Lee, Y. J.; Kim, Y. J.; Kim, B. J.Shape-anisotropic diblock copolymer particles from evaporative emulsions: experiment and theory.Macromolecules,2019,521150-1157.DOI:10.1021/acs.macromol.8b02465http://doi.org/10.1021/acs.macromol.8b02465.
Kim, S. S.; Hwang, J. K.; Lee, J. S.; Lee, J. W.Polymer blend directed anisotropic self-assembly toward mesoporous inorganic bowls and nanosheets.Sci. Adv.,2020,6eabb3814DOI:10.1126/sciadv.abb3814http://doi.org/10.1126/sciadv.abb3814.
Peng, L.; Hung, C. T.; Wang, Zhang, X. M.; Zhu, X. H.; Zhao, Z. W.; Wang, C. Y.; Tang, Y.; Li, W.; Zhao, D. Y.Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures.J. Am. Chem. Soc.,2019,1417073-7080.DOI:10.1021/jacs.9b02091http://doi.org/10.1021/jacs.9b02091.
Liu, Y.; Wang, Z. R.; Teng, W.; Zhu, H. W.; Wang, J. X.; Elzatahry, A. A.; Al-Dahyan, D.; Li, W.; Deng, Y. H.; Zhao, D. Y.A template-catalyzedin situpolymerization and co-assembly strategy for rich nitrogen-doped mesoporous carbon.J. Mater. Chem. A,2018,63162-3170.DOI:10.1039/C7TA10106Fhttp://doi.org/10.1039/C7TA10106F.
Jiang, S. Q.; Li, C.; Zhang, J. C.; Li, Q.; Xu, H. S., Xu, F. G.; Mai, Y, Y.Block copolymer self-assembly guided synthesis of mesoporous carbons with in-plane holey pores for efficient oxygen reduction reaction.Macromol. Rapid Commun.,2022,432100884DOI:10.1002/marc.202100884http://doi.org/10.1002/marc.202100884.
Hou, D.; Zhang, J. C.; Tian, H.; Li, Q.; Li, C.; Mai, Y. Y.Pore engineering of 2D mesoporous nitrogen-doped carbon on graphene through block copolymer self-assembly.Adv. Mater. Interfaces,2019,61901476DOI:10.1002/admi.201901476http://doi.org/10.1002/admi.201901476.
Li, C.; Li, Q.; Kaneti, Y. V.; Hou, D.; Yamauchi, Y.; Mai, Y. Y.Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems.Chem. Soc. Rev.,2020,494681-4736.DOI:10.1039/D0CS00021Chttp://doi.org/10.1039/D0CS00021C.
He, T. X.; Wang, W. B.; Wang, J.; Chen, B. S.; Liang, Q. L.Mesoporous carbon spheres: synthesis and applications in drug delivery system.Prog. Chem.,2020,32309-319.
Xu, M.; Yu, Q.; Liu, Z. H.; Lv, J. S.; Lian, S. T.; Hu, B.; Mai L. Q.; Zhou, L.Tailoring porous carbon spheres for supercapacitors.Nanoscale,2018,1021604-21616.DOI:10.1039/C8NR07560Chttp://doi.org/10.1039/C8NR07560C.
Tian, H.; Liang, J.; Liu, J.Nanoengineering carbon spheres as nanoreactors for sustainable energy applications.Adv. Mater.,2019,311903886DOI:10.1002/adma.201903886http://doi.org/10.1002/adma.201903886.
Guan, B. Y.; Yu, L.; Lou, X. W.Formation of asymmetric bowl-like mesoporous particlesviaemulsion-induced interface anisotropic assembly.J. Am. Chem. Soc.,2016,13811306-11311.DOI:10.1021/jacs.6b06558http://doi.org/10.1021/jacs.6b06558.
Fang, Y.; Lv, Y. Y.; Gong, F.; Wu, Z. X.; Li, X. M.; Zhu, H. W.; Zhou, L.; Yao, C.; Zhang, F.; Zheng, G. F.; Zhao, D. Y.Interface tension-induced synthesis of monodispersed mesoporous carbon hemispheres.J. Am. Chem. Soc.,2015,1372808-2811.DOI:10.1021/jacs.5b01522http://doi.org/10.1021/jacs.5b01522.
Deng, R. H.; Liang, F. X.; Zhou, P.; Zhang, C. L.; Qu, X. Z.; Wang, Q.; Li, J. L.; Zhu, J. T.; Yang, Z. Z.Janus nanodisc of diblock copolymers.Adv. Mater.,2014,264469-4472.DOI:10.1002/adma.201305849http://doi.org/10.1002/adma.201305849.
Deng, R. H.; Liang, F. X.; Li, W. K.; Yang, Z. Z.; Zhu, J. T.Reversible transformation of nanostructured polymer particles.Macromolecules,2013,467012-7017.DOI:10.1021/ma401398hhttp://doi.org/10.1021/ma401398h.
Deng, R. H.; Xu, J. P.; Yi, G.-R.; Kim, J. W.; Zhu, J. T.Responsive colloidal polymer particles with ordered mesostructures.Adv. Funct. Mater.,2021,312008169DOI:10.1002/adfm.202008169http://doi.org/10.1002/adfm.202008169.
Ku, K. H.; Ryu, J. H.; Kim, J.; Yun, H.; Nam, C.; Shin, J. M.; Kim, Y.; Jang, S. G.; Lee, W. B.; Kim, B. J.Mechanistic study on the shape transition of block copolymer particles driven by length-controlled nanorod surfactants.Chem. Mater.,2018,308669-8678.DOI:10.1021/acs.chemmater.8b04020http://doi.org/10.1021/acs.chemmater.8b04020.
Yan, N.; Zhu, Y. T.; Jiang, W.Recent progress in the self-assembly of block copolymers confined in emulsion droplets.Chem. Commun.,2018,5413183-13195.DOI:10.1039/C8CC05812Ahttp://doi.org/10.1039/C8CC05812A.
Wong, C. K.; Qiang, X. L.; Müller, A. H. E.; Gröschel, A. H.Self-assembly of block copolymers into internally ordered microparticles.Prog. Polym. Sci.,2020,102101211DOI:10.1016/j.progpolymsci.2020.101211http://doi.org/10.1016/j.progpolymsci.2020.101211.
Xu, J. P.; Zhu, J. T.Block copolymer colloidal particles with unique structures through three-dimensional confined assembly and disassembly.Chinese J. Polym. Sci.,2019,37744-759.DOI:10.1007/s10118-019-2294-0http://doi.org/10.1007/s10118-019-2294-0.
Deng, R. H.; Zheng, L. F.; Mao, X.; Li, B. H.; Zhu, J. T.Transformable colloidal polymer particles with ordered internal structures.Small,2021,172006132DOI:10.1002/smll.202006132http://doi.org/10.1002/smll.202006132.
Hu, D. W.; Chang, X. H.; Xu, Y. Q.; Yu, Q. L.; Zhu, Y, T.Light-enabled reversible shape transformation of block copolymer particles.ACS Macro Lett.,2021,10914-920.DOI:10.1021/acsmacrolett.1c00356http://doi.org/10.1021/acsmacrolett.1c00356.
Yan, N.; Liu, X. J.; Zhu, J. T.; Zhu, Y. T.; Jiang, W.Well-ordered inorganic nanoparticle arrays directed by block copolymer nanosheets.ACS Nano,2019,136638-6646.DOI:10.1021/acsnano.9b00940http://doi.org/10.1021/acsnano.9b00940.
He, Y.; Zhang, Y.; Yan, N.; Zhu, Y. T.; Jiang, W.; Shi, D. A.Self-assembly of block copolymers into sieve-like particles with arrayed switchable channels and as scaffolds to guide the arrangement of gold nanoparticles.Nanoscale,2017,915056-15061.DOI:10.1039/C7NR04923Dhttp://doi.org/10.1039/C7NR04923D.
Zhang, Q. Y.; Fan, H. L.; Zhang, L.; Jin, Z. X.Nanodiscs generated from the solvent exchange of a block copolymer.Macromolecules,2020,537025-7033.DOI:10.1021/acs.macromol.0c01185http://doi.org/10.1021/acs.macromol.0c01185.
Jin, Z. X.; Fan, H. L.Self-assembly of nanostructured block copolymer nanoparticles.Soft Matter,2014,109212-9219.DOI:10.1039/C4SM02064Bhttp://doi.org/10.1039/C4SM02064B.
Fan, H. L.; Jin, Z. X.Freezing polystyrene-b-poly(2-vinylpyridine) micelle nanoparticles with different nanostructures and sizes.Soft Matter,2014,102848-2855.DOI:10.1039/c3sm53049chttp://doi.org/10.1039/c3sm53049c.
Dai, X. Z.; Qiang, X. L.; Hils, C.; Schmalz, H.; Gröschel, A. H.Frustrated microparticle morphologies of a semicrystalline triblock terpolymer in 3D soft confinement.ACS Nano,2021,151111-1120.DOI:10.1021/acsnano.0c08087http://doi.org/10.1021/acsnano.0c08087.
Qiang, X. L.; Franzka, S.; Dai, X. Z.; Gröschel, A. H.Multicompartment microparticles of SBT triblock terpolymers through 3D confinement assembly.Macromolecules,2020,534224-4233.DOI:10.1021/acs.macromol.0c00806http://doi.org/10.1021/acs.macromol.0c00806.
Navarro, L.; Thünemann, A. F.; Yokosawa, T.; Spiecker, E.; Klinger, D.Regioselective seeded polymerization in block copolymer nanoparticles: post-assembly control of colloidal features.Angew. Chem. Int. Ed.,2022,61e202208084.
Navarro, L.; Thünemann, A. F.; Klinger, D.Solvent annealing of striped ellipsoidal block copolymer particles: reversible control over lamellae asymmetry, aspect ratio, and particle surface.ACS Macro Lett.,2022,11329-335.DOI:10.1021/acsmacrolett.1c00665http://doi.org/10.1021/acsmacrolett.1c00665.
Cui, T. T.; Li, X. Y.; Dong, B.; Li, X.; Guo, M. X.; Wu, L. X.; Li, B. H.; Li, H. L.Janus onions of block copolymersviaconfined self-assembly.Polymer,2019,17470-76.DOI:10.1016/j.polymer.2019.04.062http://doi.org/10.1016/j.polymer.2019.04.062.
Li, Y. L.; Song, D. P.; Li, Y. S.Preparation of stimuli-responsive structural colored porous microspheresviaemulsion self-assembly induced by bottlebrush triblock copolymers.Acta Polymerica Sinica (in Chinese),2021,521591-1602.
Zhao, K. J.; Gao, Z. L.; Song, D. P.; Zhang, P. Y.; Cu, J. W.Assembly of catechol-modified polymer brushes for drug delivery.Polym. Chem.,2022,13373-378.DOI:10.1039/D1PY00947Hhttp://doi.org/10.1039/D1PY00947H.
Shin, J. J.; Kim, E. J.; Ku, K. H.; Lee, Y. J.; Hawker, C. J.; Kim, B. J. 100thAnniversary of macromolecular science viewpoint: block copolymer particles: tuning shape, interfaces, and morphology.ACS Macro Lett.2020,9, 306–317.
Ku, K. H.; Shin, J. M.; Yun, H.; Yi, G. R.; Jang, S. G.; Kim, B. J.Multidimensional design of anisotropic polymer particles from solvent-evaporative emulsion.Adv. Funct. Mater.,2018,281802961DOI:10.1002/adfm.201802961http://doi.org/10.1002/adfm.201802961.
Hwang, J.; Kim, S.; Wiesner, U.; Lee, J.Generalized access to mesoporous inorganic particles and hollow spheres from multicomponent polymer blends.Adv. Mater.,2018,301801127DOI:10.1002/adma.201801127http://doi.org/10.1002/adma.201801127.
Wang, M.; Mao, X.; Liu, J. Y.; Deng, B. T.; Deng, S.; Jin, S. H.; Li, W.; Gong, J.; Deng, R. H.; Zhu, J. T.A versatile 3D-confined self-assembly strategy for anisotropic and ordered mesoporous carbon microparticles.Adv. Sci.,2022:2202394.
Lee, Y. J.; Kim, H. E.; Oh, H.; Yun, H.; Lee, J.; Shin, S.; Lee, H. J.; Kim, B. J.Lens-shaped carbon particles with perpendicularly-oriented channels for high-performance proton exchange membrane fuel cells.ACS Nano,2022,162988-2996.DOI:10.1021/acsnano.1c10280http://doi.org/10.1021/acsnano.1c10280.
Deng, R. H.; Liu, S. Q.; Liang, F. X.; Wang, K.; Zhu, J. T.; Yang, Z. Z.Polymeric Janus particles with hierarchical structures.Macromolecules,2014,473701-3707.DOI:10.1021/ma500331whttp://doi.org/10.1021/ma500331w.
Zhang, J.; Kong, W. X.; Duan, H. M.Soft confinement-induced morphologies of the blends of AB diblock copolymers and C homopolymers.Langmuir,2017,333123-3133.DOI:10.1021/acs.langmuir.7b00181http://doi.org/10.1021/acs.langmuir.7b00181.
Yang, R. Q.; Li, B. H.; Shi, A. C.Phase behavior of binary blends of diblock copolymer/homopolymer confined in spherical nanopores.Langmuir,2012,281569-1578.DOI:10.1021/la204449xhttp://doi.org/10.1021/la204449x.
Kim, E. J.; Shin, J. M.; Kim, Y. J.; Ku, K. H.; Yun, H.; Kim, B. J.Shape control of nanostructured cone-shaped particles by tuning the blend morphology of A-b-B diblock copolymers and C-type copolymers within emulsion droplets.Polym. Chem.,2019,102415-2423.DOI:10.1039/C9PY00306Ahttp://doi.org/10.1039/C9PY00306A.
Ikkala, O.; ten Brinke, G.Functional materials based on self-assembly of polymeric supramolecules.Science,2002,2952407-2409.DOI:10.1126/science.1067794http://doi.org/10.1126/science.1067794.
Deng, S.; Deng, R. H.; Mao, X.; Xiong, B. J.; Wang, M.; Chen, S. B.; Binder, W. H.; Zhu, J. T.; Yang, Z. Z..Kinetically controlled supramolecular block copolymer self-assembly: multicolor photonic crystal patterns from a single formulation.CCS Chem.,2022:DOI: 10.31635/ccschem.022.202202530DOI:10.31635/ccschem.022.202202530http://doi.org/10.31635/ccschem.022.202202530.
Brandrup, J., Immergut, E. H., Grulke, E. A., Eds.;Polymer Handbook; Wiley: New York,1999; Section VII, pp. 675−714.
Drelinkiewicz, A.; Sobczak, J.W.; Sobczak, E.; Krawczyk, M.; Zięba, A.; WaksmundzkaGóra, A.Physicochemical and catalytic properties of Pt-poly(4-vinylpyridine) composites.Mater. Chem. Phys.,2009,114763-773.DOI:10.1016/j.matchemphys.2008.10.028http://doi.org/10.1016/j.matchemphys.2008.10.028.
Deng, R. H.; Liang, F. X.; Li, W. K.; Liu, S. Q.; Liang, R. J.; Cai, M. L.; Yang, Z. Z.; Zhu, J. T.Shaping functional nano-objects by 3D confined supramolecular assembly.Small,2013,94099-4103.DOI:10.1002/smll.201300271http://doi.org/10.1002/smll.201300271.
0
Views
21
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution