a.School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
b.State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
c.Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
zhongliwang@tiangong.edu.cn(Z.L.W.)
yanhou.geng@tju.edu.cn (Y.H.G.)
Scan for full text
Dong-Sheng Yan, Xu-Wen Zhang, Zhong-Li Wang, et al. 3-Methylcyclohexanone Processed n-Channel Organic Thin-Film Transistors Based on a Conjugated Polymer Synthesized by Direct Arylation Polycondensation. [J]. Chinese Journal of Polymer Science 41(5):824-831(2023)
Dong-Sheng Yan, Xu-Wen Zhang, Zhong-Li Wang, et al. 3-Methylcyclohexanone Processed n-Channel Organic Thin-Film Transistors Based on a Conjugated Polymer Synthesized by Direct Arylation Polycondensation. [J]. Chinese Journal of Polymer Science 41(5):824-831(2023) DOI: 10.1007/s10118-023-2937-z.
Direct arylation polycondensation synthesized conjugated polymer PFuDPP-4FTVT is soluble in 3-methylcyclohexanone (3-MC). n-Channel organic thin-film transistors of the polymer with electron mobility (,μ,e,) above 1 cm,2,·V,−1,·s,−1,were fabricated with 3-MC. This is the first report on high mobility conjugated polymers processible with naturally occurred green solvent.
The solubility of a direct arylation polycondensation (DArP) synthesized conjugated polymer,i.e., poly(3,6-bis(furan-2-yl)-2,5-bis(4-tetradecyloctadecyl)-pyrrolo[3,4-,c,]pyrrole-1,4(2,H,5,H,)-dione-,alt,-1,2-bis(3,4-difluorothien-2-yl)ethene) (PFuDPP-4FTVT), in various organic solvents was studied. The polymer is soluble in 3-methylcyclohexanone (3-MC), a green solvent from peppermint oil, besides other solvents such as anisole, cyclopentyl methyl ether (CPME) and,o,-dichlorobenzene (,o,-DCB),etc,. Based on the Hansen solubility parameters (HSP) analysis, 3-MC is identified as a “marginal solvent” of PFuDPP-4FTVT. The morphology of the spin-coated films with 3-MC as the solvent strongly correlated with the solution preparation conditions. With a 3-MC solution aged for 3 h at 70 °C, n-channel organic thin-film transistors (OTFTs) with electron mobility (,μ,e,) above 1 cm,2,·V,−1,·s,−1,and current on/off ratio (,I,on,/,I,off,) higher than 10,5,were fabricated by spin-coating. This is the first report on high mobility conjugated polymers for OTFTs processible with naturally occurred green solvent.
Conjugated polymersOrganic thin-film transistorsElectron mobilityGreen solventDirect arylation polycondensation
Huang, F.; Bo, Z. S.; Geng, Y. H.; Wang, X. H.; Wang, L. X.; Ma, Y. G.; Hou, J. H.; Hu, W. P.; Pei, J.; Dong, H. L.; Wang, S.; Li, Z.; Shuai, Z. G.; Li, Y. F.; Cao, Y.Study on optoelectronic polymers: an overview and outlook.Acta Polymerica Sinica (in Chinese),2019,50988-1046.DOI:10.11777/j.issn1000-3304.2019.19110http://doi.org/10.11777/j.issn1000-3304.2019.19110.
Kim, M.; Ryu, S. U.; Park, S. A.; Choi, K.; Kim, T.; Chung, D.; Park, T.Donor-acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report.Adv. Funct. Mater.,2019,301904545.
Zhou, Y.; Zhang, W.; Yu, G.Recent structural evolution of lactam- and imide-functionalized polymers applied in organic field-effect transistors and organic solar cells.Chem. Sci.,2021,126844-6878.DOI:10.1039/D1SC01711Jhttp://doi.org/10.1039/D1SC01711J.
Chen, J.; Yang, J.; Guo, Y.; Liu, Y.Acceptor modulation strategies for improving the electron transport in high-performance organic field-effect transistors.Adv. Mater.,2022,34e2104325DOI:10.1002/adma.202104325http://doi.org/10.1002/adma.202104325.
Liu, Q.; Bottle, S. E.; Sonar, P.Developments of diketopyrrolopyrrole-dye-based organic semiconductors for a wide range of applications in electronics.Adv. Mater.,2020,32e1903882DOI:10.1002/adma.201903882http://doi.org/10.1002/adma.201903882.
Yang, Y.; Liu, Z.; Zhang, G.; Zhang, X.; Zhang, D.The effects of side chains on the charge mobilities and functionalities of semiconducting conjugated polymers beyond solubilities.Adv. Mater.,2019,31e1903104DOI:10.1002/adma.201903104http://doi.org/10.1002/adma.201903104.
Nielsen, C. B.; Turbiez, M.; McCulloch, I.Recent advances in the development of semiconducting DPP-containing polymers for transistor applications.Adv. Mater.,2013,251859-1880.DOI:10.1002/adma.201201795http://doi.org/10.1002/adma.201201795.
Shen, T.; Li, W.; Zhao, Y.; Liu, Y.; Wang, Y.An all-C–H-activation strategy to rapidly synthesize high-mobility well-balanced ambipolar semiconducting polymers.Matter,2022,51953-1968.DOI:10.1016/j.matt.2022.04.008http://doi.org/10.1016/j.matt.2022.04.008.
Kang, I.; Yun, H. J.; Chung, D. S.; Kwon, S. K.; Kim, Y. H.Record high hole mobility in polymer semiconductorsviaside-chain engineering.J. Am. Chem. Soc.,2013,13514896-14899.DOI:10.1021/ja405112shttp://doi.org/10.1021/ja405112s.
Yao, J.; Yu, C.; Liu, Z.; Luo, H.; Yang, Y.; Zhang, G.; Zhang, D.Significant improvement of semiconducting performance of the diketopyrrolopyrrole-quaterthiophene conjugated polymer through side-chain engineeringviahydrogen-bonding.J. Am. Chem. Soc.,2016,138173-185.DOI:10.1021/jacs.5b09737http://doi.org/10.1021/jacs.5b09737.
Wang, Z.; Gao, M.; He, C.; Shi, W.; Deng, Y.; Han, Y.; Ye, L.; Geng, Y.Unraveling the molar mass dependence of shearing-induced aggregation structure of a high-mobility polymer semiconductor.Adv. Mater.,2022,34e2108255DOI:10.1002/adma.202108255http://doi.org/10.1002/adma.202108255.
Zhang, A.; Xiao, C.; Wu, Y.; Li, C.; Ji, Y.; Li, L.; Hu, W.; Wang, Z.; Ma, W.; Li, W.Effect of fluorination on molecular orientation of conjugated polymers in high performance field-effect transistors.Macromolecules,2016,496431-6438.DOI:10.1021/acs.macromol.6b01446http://doi.org/10.1021/acs.macromol.6b01446.
Back, J. Y.; Yu, H.; Song, I.; Kang, I.; Ahn, H.; Shin, T. J.; Kwon, S. K.; Oh, J. H.; Kim, Y. H.Investigation of structure-property relationships in diketopyrrolopyrrole-based polymer semiconductorsviaside-chain engineering.Chem. Mater.,2015,271732-1739.DOI:10.1021/cm504545ehttp://doi.org/10.1021/cm504545e.
Lv, S. Y.; Li, Q. Y.; Li, B. W.; Wang, J. Y.; Mu, Y. B.; Li, L.; Pei, J.; Wan, X. B.Thiazole-flanked thiazoloisoindigo as a monomer for balanced ambipolar polymeric field-effect transistors.Chinese J. Polym. Sci.,2022,401131-1140.DOI:10.1007/s10118-022-2731-3http://doi.org/10.1007/s10118-022-2731-3.
Capello, C.; Fischer, U.; Hungerbühler, K.What is a green solvent? A comprehensive framework for the environmental assessment of solvents..Green Chem.,2007,9927-934.DOI:10.1039/b617536hhttp://doi.org/10.1039/b617536h.
Campana, F.; Kim, C.; Marrocchi, A.; Vaccaro, L.Green solvent-processed organic electronic devices.J. Mater. Chem. C,2020,815027-15047.DOI:10.1039/D0TC03610Bhttp://doi.org/10.1039/D0TC03610B.
Ran, Y.; Guo, Y.; Liu, Y.Organostannane-free polycondensation and eco-friendly processing strategy for the design of semiconducting polymers in transistors.Mater. Horiz.,2020,71955-1970.DOI:10.1039/D0MH00138Dhttp://doi.org/10.1039/D0MH00138D.
Choi, H. H.; Baek, J. Y.; Song, E.; Kang, B.; Cho, K.; Kwon, S.-K.; Kim, Y. H.A pseudo-regular alternating conjugated copolymer using an asymmetric monomer: a high-mobility organic transistor in nonchlorinated solvents.Adv. Mater.,2015,273626-3631.DOI:10.1002/adma.201500335http://doi.org/10.1002/adma.201500335.
Ji, Y.; Xiao, C.; Wang, Q.; Zhang, J.; Li, C.; Wu, Y.; Wei, Z.; Zhan, X.; Hu, W.; Wang, Z.; Janssen, R. A. J.; Li, W.Asymmetric diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells processed from a nonchlorinated solvent.Adv. Mater.,2016,28943-950.DOI:10.1002/adma.201504272http://doi.org/10.1002/adma.201504272.
Yun, H. J.; Lee, G. B.; Chung, D. S.; Kim, Y. H.; Kwon, S. K.Novel diketopyrroloppyrrole random copolymers: high charge-carrier mobility from environmentally benign processing.Adv. Mater.,2014,266612-6616.DOI:10.1002/adma.201400877http://doi.org/10.1002/adma.201400877.
Ding, S.; Ni, Z.; Hu, M.; Qiu, G.; Li, J.; Ye, J.; Zhang, X.; Liu, F.; Dong, H.; Hu, W.An asymmetric furan/thieno[3,2-b]thiophene diketopyrrolopyrrole building block for annealing-free green-solvent processable organic thin-film transistors.Macromol. Rapid Commun.,2018,39e1800225DOI:10.1002/marc.201800225http://doi.org/10.1002/marc.201800225.
Wang, Z.; Song, X.; Jiang, Y.; Zhang, J.; Yu, X.; Deng, Y.; Han, Y.; Hu, W.; Geng, Y.A simple structure conjugated polymer for high mobility organic thin film transistors processed from nonchlorinated solvent.Adv. Sci.,2019,61902412DOI:10.1002/advs.201902412http://doi.org/10.1002/advs.201902412.
Wang, Z.; Shi, Y.; Deng, Y.; Han, Y.; Geng, Y.Toward high mobility green solvent-processable conjugated polymers: a systematic study on chalcogen effect in poly(diketopyrrolopyrrole-alt-terchalcogenophene)s.Adv. Funct. Mater.,2021,312104881DOI:10.1002/adfm.202104881http://doi.org/10.1002/adfm.202104881.
Ding, Y.; Zhao, F.; Kim, S.; Wang, X.; Lu, H.; Zhang, G.; Cho, K.; Qiu, L.Azaisoindigo-based polymers with a linear hybrid siloxane-based side chain for high-performance semiconductors processable with nonchlorinated solvents.ACS Appl. Mater. Interfaces,2020,1241832-41841.DOI:10.1021/acsami.0c11436http://doi.org/10.1021/acsami.0c11436.
Ding, Y.; Jiang, L.; Du, Y.; Kim, S.; Wang, X.; Lu, H.; Zhang, G.; Cho, K.; Qiu, L.Linear hybrid siloxane-based side chains for highly soluble isoindigo-based conjugated polymers.Chem. Commun.,2020,5611867-11870.DOI:10.1039/D0CC01497Dhttp://doi.org/10.1039/D0CC01497D.
Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C. R.; Abou-Shehada, S.; Dunn, P. J.CHEM21 selection guide of classical- and less classical-solvents.Green Chem.,2016,18288-296.DOI:10.1039/C5GC01008Jhttp://doi.org/10.1039/C5GC01008J.
Alder, C. M.; Hayler, J. D.; Henderson, R. K.; Redman, A. M.; Shukla, L.; Shuster, L. E.; Sneddon, H. F.Updating and further expanding GSK's solvent sustainability guide.Green Chem.,2016,183879-3890.DOI:10.1039/C6GC00611Fhttp://doi.org/10.1039/C6GC00611F.
Prat, D.; Pardigon, O.; Flemming, H.-W.; Letestu, S.; Ducandas, V.; Isnard, P.; Guntrum, E.; Senac, T.; Ruisseau, S.; Cruciani, P.; Hosek, P.Sanofi’s solvent selection guide: a step toward more sustainable processes.Org. Process Res. Dev.,2013,171517-1525.DOI:10.1021/op4002565http://doi.org/10.1021/op4002565.
Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A.; Kleine, H. P.; Knight, C.; Nagy, M. A.; Perry, D. A.; Stefaniak, M.Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation.Green Chem.,2008,1031-36.DOI:10.1039/B711717Ehttp://doi.org/10.1039/B711717E.
Chen, M. S.; Lee, O. P.; Niskala, J. R.; Yiu, A. T.; Tassone, C. J.; Schmidt, K.; Beaujuge, P. M.; Onishi, S. S.; Toney, M. F.; Zettl, A.; Fréchet, J. M. J.Enhanced solid-state order and field-effect hole mobility through control of nanoscale polymer aggregation.J. Am. Chem. Soc.,2013,13519229-19236.DOI:10.1021/ja4088665http://doi.org/10.1021/ja4088665.
Sonar, P.; Chang, J.; Kim, J. H.; Ong, K. H.; Gann, E.; Manzhos, S.; Wu, J.; McNeill, C. R.High-mobility ambipolar organic thin-film transistor processed from a nonchlorinated solvent.ACS Appl. Mater. Interfaces,2016,824325-24330.DOI:10.1021/acsami.6b08075http://doi.org/10.1021/acsami.6b08075.
Lee, S. M.; Lee, H. R.; Han, A. R.; Lee, J.; Oh, J. H.; Yang, C.High-performance furan-containing conjugated polymer for environmentally benign solution processing.ACS Appl. Mater. Interfaces,2017,915652-15661.DOI:10.1021/acsami.7b04014http://doi.org/10.1021/acsami.7b04014.
Sui, Y.; Wang, Z.; Bai, J.; Shi, Y.; Zhang, X.; Deng, Y.; Han, Y.; Geng, Y.Diketopyrrolopyrrole-based conjugated polymers synthesized by direct arylation polycondensation for anisole-processed high mobility organic thin-film transistors.J. Mater. Chem. C,2022,102616-2622.DOI:10.1039/D1TC04207Fhttp://doi.org/10.1039/D1TC04207F.
Li, C.; Misovich, M. V.; Pardo, M.; Fang, Z.; Laskin, A.; Chen, J.; Rudich, Y.Secondary organic aerosol formation from atmospheric reactions of anisole and associated health effects.Chemosphere,2022,308136421DOI:10.1016/j.chemosphere.2022.136421http://doi.org/10.1016/j.chemosphere.2022.136421.
Snyder, R.; Hedli, C. C.An overview of benzene metabolism.Environ. Health Perspect,1996,1041165-1171.
Mohaddese M.; Nastaran K.Chemical composition and antimicrobial activity of peppermint (mentha piperita L.) essential oil.Songklanakarin J. Sci. Technol.,2014,3683-87.
Newberne, P; Doull, J; Feron, V. J.; Goodman, J. I.; Munro, I. C.; Portoghese, P. S.; Waddell, W. J.; Wagner, B. M.; Weil, C. S.; Adams, T. B.; Hallagan, J. B.GRAS flavoring substances 19.Food Technol.,2000,5466-84.
Lee, J.; Kim, G. W.; Kim, M.; Park, S. A.; Park, T.Nonaromatic green-solvent-processable, dopant-free, and lead-capturable hole transport polymers in perovskite solar cells with high efficiency.Adv. Energy Mater.,2020,101902662DOI:10.1002/aenm.201902662http://doi.org/10.1002/aenm.201902662.
Machui, F.; Abbott, S.; Waller, D.; Koppe, M.; Brabec, C. J.Determination of Solubility Parameters for organic semiconductor formulations.Macromol. Chem. Phys.,2011,2122159-2165.DOI:10.1002/macp.201100284http://doi.org/10.1002/macp.201100284.
Kim, N. K.; Shin, E. S.; Noh, Y. Y.; Kim, D. Y.A selection rule of solvent for highly aligned diketopyrrolopyrrole-based conjugated polymer film for high performance organic field-effect transistors.Org. Electron.,2018,556-14.DOI:10.1016/j.orgel.2018.01.006http://doi.org/10.1016/j.orgel.2018.01.006.
Dereje, M. M.; Ji, D.; Kang, S.H.; Yang, C.; Noh, Y. Y.Effect of pre-aggregation in conjugated polymer solution on performance of diketopyrrolopyrrole-based organic field-effect transistors.Dyes Pigments,2017,145270-276.DOI:10.1016/j.dyepig.2017.06.018http://doi.org/10.1016/j.dyepig.2017.06.018.
Gaikwad, A. M.; Khan, Y.; Ostfeld, A. E.; Pandya, S.; Abraham, S.; Arias, A. C.Identifying orthogonal solvents for solution processed organic transistors.Org. Electron.,2016,3018-29.DOI:10.1016/j.orgel.2015.12.008http://doi.org/10.1016/j.orgel.2015.12.008.
Li, H.; Liu, X.; Jin, T.; Zhao, K.; Zhang, Q.; He, C.; Yang, H.; Chen, Y.; Huang, J.; Yu, X.; Han, Y.Optimizing the intercrystallite connection of a donor-acceptor conjugated semiconductor polymer by controlling the crystallization rateviatemperature.Macromol. Rapid Commun.,2022,43e2200084DOI:10.1002/marc.202200084http://doi.org/10.1002/marc.202200084.
Zhao, K.; Zhang, Q.; Chen, L.; Zhang, T.; Han, Y.Nucleation and growth of P(NDI2OD-T2) nanowiresviaside chain ordering and backbone planarization.Macromolecules,2021,542143-2154.DOI:10.1021/acs.macromol.0c02436http://doi.org/10.1021/acs.macromol.0c02436.
Hansen, C. M. inHansen Solubility Parameters: A User's Handbook. CRC Press: Boca Raton,2007, p. 75.
Panzer, F.; Bassler, H.; Kohler, A.Temperature induced order-disorder transition in solutions of conjugated polymers probed by optical spectroscopy.J. Phys. Chem. Lett.,2017,8114-125.DOI:10.1021/acs.jpclett.6b01641http://doi.org/10.1021/acs.jpclett.6b01641.
Schroeder, B. C.; Chiu, Y. C.; Gu, X.; Zhou, Y.; Xu, J.; Lopez, J.; Lu, C.; Toney, M. F.; Bao, Z.Non-conjugated flexible linkers in semiconducting polymers: a pathway to improved processability without compromising device performance.Adv. Electron. Mater.,2016,21600104DOI:10.1002/aelm.201600104http://doi.org/10.1002/aelm.201600104.
Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A. J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J.; Fenoll, M.; Dindar, A.; Haske, W.; Najafabadi, E.; Khan, T. M.; Sojoudi, H.; Barlow, S.; Graham, S.; Bredas, J. L.; Marder, S. R.; Kahn, A.; Kippelen, B.A universal method to produce low-work function electrodes for organic electronics.Science,2012,336327-332.DOI:10.1126/science.1218829http://doi.org/10.1126/science.1218829.
Dong, H.; Jiang, S.; Jiang, L.; Liu, Y.; Li, H.; Hu, W.; Wang, E.; Yan, S.; Wei, Z.; Xu, W.; Gong, X.Nanowire crystals of a rigid rod conjugated polymer.J. Am. Chem. Soc.,2009,13117315-17320.DOI:10.1021/ja907015phttp://doi.org/10.1021/ja907015p.
Yao, Y.; Dong, H.; Liu, F.; Russell, T. P.; Hu, W.Approaching intra- and interchain charge transport of conjugated polymers facilely by topochemical polymerized single crystals.Adv. Mater.,2017,291701251DOI:10.1002/adma.201701251http://doi.org/10.1002/adma.201701251.
Yao, Z. F.; Li, Q. Y.; Wu, H. T.; Ding, Y. F.; Wang, Z. Y.; Lu, Y.; Wang, J. Y.; Pei, J.Building crystal structures of conjugated polymers through X-ray diffraction and molecular modeling.SmartMat,2021,2378-387.DOI:10.1002/smm2.1053http://doi.org/10.1002/smm2.1053.
Rivnay, J.; Noriega, R.; Kline, R. J.; Salleo, A.; Toney, M. F.Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films.Phys. Rev. B,2011,84045203DOI:10.1103/PhysRevB.84.045203http://doi.org/10.1103/PhysRevB.84.045203.
0
Views
13
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution