a.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
b.School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
zhqawh@ciac.ac.cn(Q.Z.)
ychan@ciac.ac.cn(Y.C.H.)
Scan for full text
Duo Liu, Jun-Hang Li, Si-Chun Wang, et al. Control Aggregation of P3HT in Solution for High Efficiency Doping: Ensuring Structural Order and the Distribution of Dopants. [J]. Chinese Journal of Polymer Science 41(5):811-823(2023)
Duo Liu, Jun-Hang Li, Si-Chun Wang, et al. Control Aggregation of P3HT in Solution for High Efficiency Doping: Ensuring Structural Order and the Distribution of Dopants. [J]. Chinese Journal of Polymer Science 41(5):811-823(2023) DOI: 10.1007/s10118-023-2939-x.
Here, we regulate the aggregation states of P3HT and doping with F4TCNQ to ensure the polarons on the backbone to have high charge dissociation and transport. The dopants do not destroy the π-π interaction and only enter the alkyl side chain region which has smaller Coulomb interaction to the polarons.
Molecular doping is one of the most important tools to manipulate the electrical properties of conjugated polymers for application in organic optoelectronics. The polymer crystallinity and distribution position of the dopant crucially determine electrical conductivity of the doped polymer. However, in solution-mixed doping, the interplay between polymer and dopant leads to highly structural disorder of polymer and random arrangement of dopant. Here, we propose a strategy to ensure the dopant induced polarons have high charge dissociation and transport by letting the conjugated polymers aggregate in the marginal solvent solution by cooling it from higher temperature to room temperature. We select poly(3-hexylthiophene-2,5-diyl) (P3HT) solution doped by 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) as a model system. P3HT crystallizes in the marginal solvent, such as 1,1,2-trichloroethane (TCE) driven by the favor,π,-,π,interaction between planar polymer backbone. The dopant F4TCNQ enters the alkyl side chain region not the,π,-,π,stacking region and thus guarantees high crystallinity and the,π,-,π,interaction of P3HT. This distribution of F4TCNQ which away from the polymer backbone to ensure higher charge dissociation and transport. Finally, we obtained a high conductivity value of 23 S/cm by doping P3HT with 20% F4TCNQ by using the marginal solvent, which is higher than doping P3HT with a disordered coil conformation in chlorobenzene (CB) of 7 S/cm, which the dopants enter both the alkyl side chain region and the,π,-,π,stacking region.
SolventCrystallineDopant locationDoping efficiencyElectrical conductivity
Jacobs, I. E.; Moule, A. J.Controlling molecular doping in organic semiconductors.Adv. Mater.,2017,291703063DOI:10.1002/adma.201703063http://doi.org/10.1002/adma.201703063.
Scaccabarozzi, A. D.; Basu, A.; Anies, F.; Liu, J.; Zapata-Arteaga, O.; Warren, R.; Firdaus, Y.; Nugraha, M. I.; Lin, Y. B.; Campoy-Quiles, M.; Koch, N.; Muller, C.; Tsetseris, L.; Heeney, M.; Anthopoulos, T. D.Doping approaches for organic semiconductors.Chem. Rev.,2022,1224420-4492.DOI:10.1021/acs.chemrev.1c00581http://doi.org/10.1021/acs.chemrev.1c00581.
Pingel, P.; Neher, D.Comprehensive picture of p-type doping of P3HT with the molecular acceptor F(4)TCNQ.Phys. Rev. B,2013,87115209DOI:10.1103/PhysRevB.87.115209http://doi.org/10.1103/PhysRevB.87.115209.
Scholes, D. T.; Hawks, S. A.; Yee, P. Y.; Wu, H.; Lindemuth, J. R.; Tolbert, S. H.; Schwartz, B. J.Overcoming film quality issues for conjugated polymers doped with F(4)TCNQ by solution sequential processing: hall effect, structural, and optical measurements.J. Phys. Chem. Lett.,2015,64786-4793.DOI:10.1021/acs.jpclett.5b02332http://doi.org/10.1021/acs.jpclett.5b02332.
Hynynen, J.; Kiefer, D.; Yu, L.; Kroon, R.; Munir, R.; Amassian, A.; Kemerink, M.; Müller, C.Enhanced electrical conductivity of molecularly p-doped poly(3-hexylthiophene) through understanding the correlation with solid-state order.Macromolecules,2017,508140-8148.DOI:10.1021/acs.macromol.7b00968http://doi.org/10.1021/acs.macromol.7b00968.
Lim, E.; Peterson, K. A.; Su, G. M.; Chabinyc, M. L.Thermoelectric properties of poly(3-hexylthiophene) (P3HT) doped with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) by vapor-phase infiltration.Chem. Mater.,2018,30998-1010.DOI:10.1021/acs.chemmater.7b04849http://doi.org/10.1021/acs.chemmater.7b04849.
Untilova, V.; Biskup, T.; Biniek, L.; Vijayakumar, V.; Brinkmann, M.Control of chain alignment and crystallization helps enhance charge conductivities and thermoelectric power factors in sequentially doped P3HT:F-4TCNQ films.Macromolecules,2020,532441-2453.DOI:10.1021/acs.macromol.9b02389http://doi.org/10.1021/acs.macromol.9b02389.
Gao, J.; Niles, E. T.; Grey, J. K.Aggregates promote efficient charge transfer doping of poly(3-hexylthiophene).J. Phys. Chem. Lett.,2013,42953-2957.DOI:10.1021/jz401555xhttp://doi.org/10.1021/jz401555x.
Zhou, Y. Y.; Wang, Z. Y.; Yao, Z. F.; Yu, Z. D.; Lu, Y.; Wang, X. Y.; Liu, Y.; Li, Q. Y.; Zou, L.; Wang, J. Y.; Pei, J.Systematic investigation of solution-state aggregation effect on electrical conductivity in doped conjugated polymers.CCS Chem.,2021,32994-3004.DOI:10.31635/ccschem.021.202101411http://doi.org/10.31635/ccschem.021.202101411.
Yim, K. H.; Whiting, G. L.; Murphy, C. E.; Halls, J. J. M.; Burroughes, J. H.; Friend, R. H.; Kim, J. S.Controlling electrical properties of conjugated polymersviaa solution-based p-type doping.Adv. Mater.,2008,203319-3324.DOI:10.1002/adma.200800735http://doi.org/10.1002/adma.200800735.
Duong, D. T.; Wang, C. C.; Antono, E.; Toney, M. F.; Salleo, A.The chemical and structural origin of efficient p-type doping in P3HT.Org. Electron.,2013,141330-1336.DOI:10.1016/j.orgel.2013.02.028http://doi.org/10.1016/j.orgel.2013.02.028.
Méndez, H.; Heimel, G.; Winkler, S.; Frisch, J.; Opitz, A.; Sauer, K.; Wegner, B.; Oehzelt, M.; Röthel, C.; Duhm, S.; Többens, D.; Koch, N.; Salzmann, I.Charge-transfer crystallites as molecular electrical dopants.Nat. Commun.,2015,68560DOI:10.1038/ncomms9560http://doi.org/10.1038/ncomms9560.
Jacobs, I. E.; Aasen, E. W.; Oliveira, J. L.; Fonseca, T. N.; Roehling, J. D.; Li, J.; Zhang, G. W.; Augustine, M. P.; Mascal, M.; Moule, A. J.Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology.J. Mater. Chem. C,2016,43454-3466.DOI:10.1039/C5TC04207Khttp://doi.org/10.1039/C5TC04207K.
Hamidi-Sakr, A.; Biniek, L.; Bantignies, J. L.; Maurin, D.; Herrmann, L.; Leclerc, N.; Leveque, P.; Vijayakumar, V.; Zimmermann, N.; Brinkmann, M.A versatile method to fabricate highly in-plane aligned conducting polymer films with anisotropic charge transport and thermoelectric properties: the key role of alkyl side chain layers on the doping mechanism.Adv. Funct. Mater.,2017,271700173DOI:10.1002/adfm.201700173http://doi.org/10.1002/adfm.201700173.
Yan, H.; Ma, W.Molecular doping efficiency in organic semiconductors: fundamental principle and promotion strategy.Adv. Funct. Mater.,2022,322111351DOI:10.1002/adfm.202111351http://doi.org/10.1002/adfm.202111351.
Jacobs, I. E.; Cendra, C.; Harrelson, T. F.; Valdez, Z. I. B.; Faller, R.; Salleo, A.; Moule, A. J.Polymorphism controls the degree of charge transfer in a molecularly doped semiconducting polymer.Mater. Horiz.,2018,5655-660.DOI:10.1039/C8MH00223Ahttp://doi.org/10.1039/C8MH00223A.
Neelamraju, B.; Watts, K. E.; Pemberton, J. E.; Ratcliff, E. L.Correlation of coexistent charge transfer states in F(4)TCNQ-doped P3HT with microstructure.J. Phys. Chem. Lett.,2018,96871-6877.DOI:10.1021/acs.jpclett.8b03104http://doi.org/10.1021/acs.jpclett.8b03104.
Wu, E. C. K.; Salamat, C. Z.; Tolbert, S. H.; Schwartz, B. J.Molecular dynamics study of the thermodynamics of integer charge transfer vs charge-transfer complex formation in doped conjugated polymers.ACS Appl. Mater. Interfaces,2022,1426988-27001.DOI:10.1021/acsami.2c06449http://doi.org/10.1021/acsami.2c06449.
Stanfield, D. A.; Wu, Y. T.; Tolbert, S. H.; Schwartz, B. J.Controlling the formation of charge transfer complexes in chemically doped semiconducting polymers.Chem. Mater.,2021,332343-2356.DOI:10.1021/acs.chemmater.0c04471http://doi.org/10.1021/acs.chemmater.0c04471.
McFarland, F. M.; Ellis, C. M.; Guo, S.The aggregation of poly(3-hexylthiophene) into nanowires: with and without chemical doping.J. Phys. Chem. C,2017,1214740-4746.DOI:10.1021/acs.jpcc.7b00816http://doi.org/10.1021/acs.jpcc.7b00816.
McFarland, F. M.; Bonnette, L. R.; Acres, E. A.; Guo, S.The impact of aggregation on the p-doping kinetics of poly(3-hexylthiophene).J. Mater. Chem. C,2017,55764-5771.DOI:10.1039/C7TC00189Dhttp://doi.org/10.1039/C7TC00189D.
Tang, K.; McFarland, F. M.; Travis, S.; Lim, J.; Azoulay, J. D.; Guo, S.Aggregation of P3HT as a preferred pathway for its chemical doping with F-4-TCNQ.Chem. Commun.,2018,5411925-11928.DOI:10.1039/C8CC05472Jhttp://doi.org/10.1039/C8CC05472J.
Gao, J.; Stein, B. W.; Thomas, A. K.; Garcia, J. A.; Yang, J.; Kirk, M. L.; Grey, J. K.Enhanced charge transfer doping efficiency in J-aggregate poly(3-hexylthiophene) nanofibers.J. Phys. Chem. C,2015,11916396-16402.DOI:10.1021/acs.jpcc.5b05191http://doi.org/10.1021/acs.jpcc.5b05191.
Wang, C. C.; Duong, D. T.; Vandewal, K.; Rivnay, J.; Salleo, A.Optical measurement of doping efficiency in poly(3-hexylthiophene) solutions and thin films.Phys. Rev. B,2015,91085205DOI:10.1103/PhysRevB.91.085205http://doi.org/10.1103/PhysRevB.91.085205.
Harrelson, T. F.; Cheng, Y. Q. Q.; Li, J.; Jacobs, I. E.; Ramirez-Cuesta, A. J.; Faller, R.; Moule, A. J.Identifying atomic scale structure in undoped/doped semicrystalline P3HT using inelastic neutron scattering.Macromolecules,2017,502424-2435.DOI:10.1021/acs.macromol.6b02410http://doi.org/10.1021/acs.macromol.6b02410.
Chen, L.; Wang, H. Y.; Liu, J. G.; Xing, R. B.; Yu, X. H.; Han, Y. C.Tuning the pi-pi stacking distance and J-aggregation of DPP-based conjugated polymerviaintroducing insulating polymer.J. Polym. Sci., Part B: Polym. Phys.,2016,54838-847.DOI:10.1002/polb.23984http://doi.org/10.1002/polb.23984.
Tsoi, W. C.; Spencer, S. J.; Yang, L.; Ballantyne, A. M.; Nicholson, P. G.; Turnbull, A.; Shard, A. G.; Murphy, C. E.; Bradley, D. D. C.; Nelson, J.; Kim, J. S.Effect of crystallization on the electronic energy levels and thin film morphology of P3HT:PCBM blends.Macromolecules,2011,442944-2952.DOI:10.1021/ma102841ehttp://doi.org/10.1021/ma102841e.
Gao, W. Y.; Kahn, A.Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: a direct and inverse photoemission study.Appl. Phys. Lett.,2001,794040-4042.DOI:10.1063/1.1424067http://doi.org/10.1063/1.1424067.
Yoon, S. E.; Kang, Y.; Jeon, G. G.; Jeon, D.; Lee, S. Y.; Ko, S. J.; Kim, T.; Seo, H.; Kim, B. G.; Kim, J. H.Exploring wholly doped conjugated polymer films based on hybrid doping: strategic approach for optimizing electrical conductivity and related thermoelectric properties.Adv. Funct. Mater.,2020,302004598DOI:10.1002/adfm.202004598http://doi.org/10.1002/adfm.202004598.
Muller, L.; Nanova, D.; Glaser, T.; Beck, S.; Pucci, A.; Kast, A. K.; Schroder, R. R.; Mankel, E.; Pingel, P.; Neher, D.; Kowalsky, W.; Lovrincic, R.Charge-transfer-solvent interaction predefines doping efficiency in p-doped P3HT films.Chem. Mater.,2016,284432-4439.DOI:10.1021/acs.chemmater.6b01629http://doi.org/10.1021/acs.chemmater.6b01629.
Duong, D. T.; Phan, H.; Hanifi, D.; Jo, P. S.; Nguyen, T. Q.; Salleo, A.Direct observation of doping sites in temperature-controlled, p-doped P3HT thin films by conducting atomic force microscopy.Adv. Mater.,2014,266069-6073.DOI:10.1002/adma.201402015http://doi.org/10.1002/adma.201402015.
Hase, H.; O'Neill, K.; Frisch, J.; Opitz, A.; Koch, N.; Salzmann, I.Unraveling the microstructure of molecularly doped poly(3-hexylthiophene) by thermally induced dedoping.J. Phys. Chem. C,2018,12225893-25899.DOI:10.1021/acs.jpcc.8b08591http://doi.org/10.1021/acs.jpcc.8b08591.
Aziz, E. E.; Vollmer, A.; Eisebitt, S.; Eberhardt, W.; Pingel, P.; Neher, D.; Koch, N.Localized charge transfer in a molecularly doped conducting polymer.Adv. Mater.,2007,193257-3260.DOI:10.1002/adma.200700926http://doi.org/10.1002/adma.200700926.
Liao, Z. X.; Wang, S. C.; Gao, C. M.; Wang, L.Combining chemical doping and thermal annealing to optimize the thermoelectric performance of the poly(3-hexylthiophene).Compos. Commun.,2022,34101255DOI:10.1016/j.coco.2022.101255http://doi.org/10.1016/j.coco.2022.101255.
Zhao, K. F.; Zhang, Q.; Chen, L.; Zhang, T.; Han, Y. C.Nucleation and growth of P(NDI2OD-T2) nanowiresviaside chain ordering and backbone planarization.Macromolecules,2021,542143-2154.DOI:10.1021/acs.macromol.0c02436http://doi.org/10.1021/acs.macromol.0c02436.
Li, H. X.; Yang, H.; Zhang, L.; Wang, S. C.; Chen, Y.; Zhang, Q.; Zhang, J. D.; Tian, H. K.; Han, Y. C.Optimizing the crystallization behavior and film morphology of donor-acceptor conjugated semiconducting polymers by side-chain-solvent interaction in nonpolar solvents.Macromolecules,2021,5410557-10573.DOI:10.1021/acs.macromol.1c01347http://doi.org/10.1021/acs.macromol.1c01347.
Zhao, K.; Xue, L. J.; Liu, J. G.; Gao, X.; Wu, S. P.; Han, Y. C.; Geng, Y. H.A new method to improve poly(3-hexyl thiophene) (P3HT) crystalline behavior: decreasing chains entanglement to promote order-disorder transformation in solution.Langmuir,2010,26471-477.DOI:10.1021/la903381fhttp://doi.org/10.1021/la903381f.
Zhang, R.; Yang, H.; Zhou, K.; Zhang, J. D.; Yu, X. H.; Liu, J. G.; Han, Y. C.Molecular orientation and phase separation by controlling chain segment and molecule movement in P3HT/N2200 blends.Macromolecules,2016,496987-6996.DOI:10.1021/acs.macromol.6b01526http://doi.org/10.1021/acs.macromol.6b01526.
Sun, Y.; Liu, J. G.; Ding, Y.; Han, Y. C.Controlling the surface composition of PCBM in P3HT/PCBM blend films by using mixed solvents with different evaporation rates.Chinese J. Polym. Sci.,2013,311029-1037.DOI:10.1007/s10118-013-1295-7http://doi.org/10.1007/s10118-013-1295-7.
Barrett, B. J.; Saund, S. S.; Dziatko, R. A.; Clark-Winters, T. L.; Katz, H. E.; Bragg, A. E.Spectroscopic studies of charge-transfer character and photoresponses of F4TCNQ-based donor-acceptor complexes.J. Phys. Chem. C,2020,1249191-9202.DOI:10.1021/acs.jpcc.0c01372http://doi.org/10.1021/acs.jpcc.0c01372.
Li, J.; Zhang, G. W.; Holm, D. M.; Jacobs, I. E.; Yin, B.; Stroeve, P.; Mascal, M.; Moule, A. J.Introducing solubility control for improved organic P-type dopants.Chem. Mater.,2015,275765-5774.DOI:10.1021/acs.chemmater.5b02340http://doi.org/10.1021/acs.chemmater.5b02340.
Liu, J. G.; Sun, Y.; Zheng, L. D.; Geng, Y. H.; Han, Y. C.Vapor-assisted imprinting to pattern poly(3-hexylthiophene) (P3HT) film with oriented arrangement of nanofibrils and flat-on conformation of P3HT chains.Polymer,2013,54423-430.DOI:10.1016/j.polymer.2012.11.011http://doi.org/10.1016/j.polymer.2012.11.011.
Xu, Y. Z.; Liu, J. G.; Wang, H. Y.; Han, Y. C.Hierarchical network-like structure of poly(3-hexlthiophene) (P3HT) by accelerating the disentanglement of P3HT in a P3HT/PS (polystyrene) blend.RSC Adv.,2013,317195-17202.DOI:10.1039/c3ra42128ghttp://doi.org/10.1039/c3ra42128g.
Zhang, R.; Yan, Y.; Yang, H.; Yu, X. H.; Liu, J. G.; Zhang, J. D.; Han, Y. C.The broken out and confinement phase separation structure evolution with the solution aggregation and relative crystallization degree in P3HT/N2200.Polymer,2018,13849-56.DOI:10.1016/j.polymer.2018.01.059http://doi.org/10.1016/j.polymer.2018.01.059.
Liang, Q. J.; Jiao, X. C.; Yan, Y.; Xie, Z. Y.; Lu, G. H.; Liu, J. G.; Han, Y. C.Separating crystallization process of P3HT and O-IDTBR to construct highly crystalline interpenetrating network with optimized vertical phase separation.Adv. Funct. Mater.,2019,291807591DOI:10.1002/adfm.201807591http://doi.org/10.1002/adfm.201807591.
Patel, S. N.; Glaudell, A. M.; Peterson, K. A.; Thomas, E. M.; O'Hara, K. A.; Lim, E.; Chabinyc, M. L.Morphology controls the thermoelectric power factor of a doped semiconducting polymer.Sci. Adv.,2017,3e1700434DOI:10.1126/sciadv.1700434http://doi.org/10.1126/sciadv.1700434.
Vijayakumar, V.; Zaborova, E.; Biniek, L.; Zeng, H. Y.; Herrmann, L.; Carvalho, A.; Boyron, O.; Leclerc, N.; Brinkmann, M.Effect of alkyl side chain length on doping kinetics, thermopower, and charge transport properties in highly oriented F(4)TCNQ-Doped PBTTT Films.ACS Appl. Mater. Interfaces,2019,114942-4953.DOI:10.1021/acsami.8b17594http://doi.org/10.1021/acsami.8b17594.
Tanaka, H.; Kanahashi, K.; Takekoshi, N.; Mada, H.; Ito, H.; Shimoi, Y.; Ohta, H.; Takenobu, T.Thermoelectric properties of a semicrystalline polymer doped beyond the insulator-to-metal transition by electrolyte gating.Sci. Adv.,2020,6eaay8065DOI:10.1126/sciadv.aay8065http://doi.org/10.1126/sciadv.aay8065.
Zhou, K.; Liu, J. G.; Zhang, R.; Zhao, Q. Q.; Cao, X. X.; Yu, X. H.; Xing, R. B.; Han, Y. C.The molecular regioregularity induced morphological evolution of polymer blend thin films.Polymer,2016,86105-112.DOI:10.1016/j.polymer.2016.01.062http://doi.org/10.1016/j.polymer.2016.01.062.
Chen, L.; Zhao, K. F.; Chi, S. J.; Liu, J. G.; Yu, X. H.; Han, Y. C.Improving fiber alignment by increasing the planar conformation of isoindigo-based conjugated polymers.Mater. Chem. Front.,2017,1286-293.DOI:10.1039/C6QM00024Jhttp://doi.org/10.1039/C6QM00024J.
Liu, W.; Müller, L.; Ma, S.; Barlow, S.; Marder, S. R.; Kowalsky, W.; Köhn, A.; Lovrincic, R.Origin of theπ-πspacing change upon doping of semiconducting polymers.J. Phys. Chem. C,2018,12227983-27990.DOI:10.1021/acs.jpcc.8b10845http://doi.org/10.1021/acs.jpcc.8b10845.
Chen, W. C.; Xiao, M. J.; Yang, C. P.; Duan, L. R.; Yang, R. Q.Efficient P3HT:PC61BM solar cells employing 1,2,4-trichlorobenzene as the processing additives.Chinese J. Polym. Sci.,2017,35302-308.DOI:10.1007/s10118-017-1892-yhttp://doi.org/10.1007/s10118-017-1892-y.
Chu, X.; Kang, J. Q.; Hong, Y.; Zhu, G. D.; Yan, S. K.; Wang, X. Y.; Sun, X. L.The effect of substrate on the properties of non-volatile ferroelectric P(VDF-TrFE)/P3HT Memory Devices.Chinese J. Polym. Sci.,2022,40692-699.DOI:10.1007/s10118-022-2733-1http://doi.org/10.1007/s10118-022-2733-1.
Qiao, X. L.; Yang, J.; Han, L. H.; Zhang, J. D.; Zhu, M. F.Synergistic effects of solvent vapor assisted spin-coating and thermal annealing on enhancing the carrier mobility of poly(3-hexylthiophene) field-effect transistors.Chinese J. Polym. Sci.,2021,39849-855.DOI:10.1007/s10118-021-2577-0http://doi.org/10.1007/s10118-021-2577-0.
Zhao, Y. F.; Zou, W. J.; Li, H.; Lu, K.; Yan, W.; Wei, Z. X.Large-area, flexible polymer solar cell based on silver nanowires as transparent electrode by roll-to-roll printing.Chinese J. Polym. Sci.,2017,35261-268.DOI:10.1007/s10118-017-1875-zhttp://doi.org/10.1007/s10118-017-1875-z.
Xue, W.; Xu, M.; Yu, M. N.; Sun, H. M.; Lin, J. Y.; Jiang, R. C.; Xie, L. H.; Shi, N. E.; Huang, W.Electrospun supramolecular hybrid microfibers from conjugated polymers: color transformation and conductivity evolution.Chinese J. Polym. Sci.,2021,39824-830.DOI:10.1007/s10118-021-2542-yhttp://doi.org/10.1007/s10118-021-2542-y.
Liu, Y. X.; Wang, L.; Zhou, K.; Wu, H. B.; Zhou, X. B.; Ma, Z. F.; Guo, S. W.; Ma, W.Subtle alignment of organic semiconductors at the donor/acceptor heterojunction facilitates the photoelectric conversion process.Chinese J. Polym. Sci.,2022,40951-959.DOI:10.1007/s10118-022-2759-4http://doi.org/10.1007/s10118-022-2759-4.
Chappell, J. S.; Bloch, A. N.; Bryden, W. A.; Maxfield, M.; Poehler, T. O.; Cowan, D. O.Degree of charge-transfer in organic conductors by infrared-absorption spectroscopy.J. Am. Chem. Soc.,1981,1032442-2443.DOI:10.1021/ja00399a066http://doi.org/10.1021/ja00399a066.
Meneghetti, M.; Pecile, C.Charge-transfer organic-crystals-molecular vibrations and spectroscopic effects of electron-molecular vibration coupling of the strong electron-acceptor TCNQF4.J. Chem. Phys.,1986,844149-4162.DOI:10.1063/1.450086http://doi.org/10.1063/1.450086.
Haworth, N. L.; Lu, J. Z.; Vo, N.; Le, T. H.; Thompson, C. D.; Bond, A. M.; Martin, L. L.Diagnosis of the redox levels of TCNQF(4) compounds using vibrational spectroscopy.ChemPlusChem,2014,79962-972.DOI:10.1002/cplu.201402013http://doi.org/10.1002/cplu.201402013.
Ghosh, R.; Pochas, C. M.; Spano, F. C.Polaron delocalization in conjugated polymer films.J. Phys. Chem. C,2016,12011394-11406.DOI:10.1021/acs.jpcc.6b02917http://doi.org/10.1021/acs.jpcc.6b02917.
Scholes, D. T.; Yee, P. Y.; Lindemuth, J. R.; Kang, H.; Onorato, J.; Ghosh, R.; Luscombe, C. K.; Spano, F. C.; Tolbert, S. H.; Schwartz, B. J.The effects of crystallinity on charge transport and the structure of sequentially processed F(4)TCNQ-doped conjugated polymer films.Adv. Funct. Mater.,2017,271702654DOI:10.1002/adfm.201702654http://doi.org/10.1002/adfm.201702654.
Ghosh, R.; Chew, A. R.; Onorato, J.; Pakhnyuk, V.; Luscombe, C. K.; Salleo, A.; Spano, F. C.Spectral signatures and spatial coherence of bound and unbound polarons in P3HT films: theory versus experiment.J. Phys. Chem. C,2018,12218048-18060.DOI:10.1021/acs.jpcc.8b03873http://doi.org/10.1021/acs.jpcc.8b03873.
0
Views
4
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution