a.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
b.School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
liujun@ciac.ac.cn
Scan for full text
Meng-Yu Liu, Xing-Xin Shao, Jun Liu, et al. A Cyano-Substituted Organoboron Electron-deficient Building Block for D-A Type Conjugated Polymers. [J]. Chinese Journal of Polymer Science 41(5):832-838(2023)
Meng-Yu Liu, Xing-Xin Shao, Jun Liu, et al. A Cyano-Substituted Organoboron Electron-deficient Building Block for D-A Type Conjugated Polymers. [J]. Chinese Journal of Polymer Science 41(5):832-838(2023) DOI: 10.1007/s10118-023-2940-4.
In this work, a cyano-substituted organoboron unit with low LUMO/HOMO energy levels, near-infrared absorption and fluorescence properties is designed and synthesized. The D-A conjugated polymers based on the newly developed B←N unit with thiophene-based units show narrow optical band gaps of,ca,. 1.3 eV.
The development of donor-acceptor (D-A) type conjugated polymers depends largely on the design of novel A building blocks. Herein, we report a novel A building block based on the cyano-substituted organoboron unit (,SBN-3,). Compared with the most common fluorine-substituted B←N unit,SBN-3,displays a significantly downshifted LUMO energy level because of the strong electron-withdrawing ability of cyano groups. In addition, due to the greater impact of cyano substitution on LUMO than on HOMO,SBN-3,exhibits a reduced band gap, near-infrared absorption and fluorescence properties. The D-A type conjugated polymers based on the cyano-substituted B←N unit with thiophene-based units show narrow optical band gaps of,ca,. 1.3 eV as well as distinctive electronic structures,i.e., delocalized LUMOs and localized HOMOs. This work thus provides not only an effective approach to design strong A units but also a new electron-deficient building block for D-A type conjugated polymers.
Cyano-substitutedB←N unitBuilding blockNarrow band gapD-A type conjugated polymers
Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B.Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices.Chem. Rev.,2009,109897-1091.DOI:10.1021/cr000013vhttp://doi.org/10.1021/cr000013v.
Wang, Z. L.; Shi, Y. B.; Deng, Y. F.; Han, Y.; Geng, Y. H.Toward high mobility green solvent-processable conjugated polymers: a systematic study on chalcogen effect in poly(diketopyrrolopyrrole-alt-terchalcogenophene)s.Adv. Funct. Mater.,2021,312104881DOI:10.1002/adfm.202104881http://doi.org/10.1002/adfm.202104881.
Genene, Z.; Mammo, W.; Wang, E. G.; Andersson, M. R.Recent advances in n-type polymers for all-polymer solar cells.Adv. Mater.,2019,31180727.
Shi, K.; Zhang, F. J.; Di, C. A.; Yan, T. W.; Zou, Y.; Zhou, X.; Zhu, D. B.; Wang, J. Y.; Pei, J.Toward high performance n-type thermoelectric materials by rational modification of BDPPV backbones.J. Am. Chem. Soc.,2015,1376979-6982.DOI:10.1021/jacs.5b00945http://doi.org/10.1021/jacs.5b00945.
Kim, M.; Ryu, S. U.; Park, S. A.; Choi, K.; Kim, T.; Chung, D.; Park, T.Donor-acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report.Adv. Funct. Mater.,2020,30190454.
Cao, X.; Min, Y.; Tian, H. K.; Liu, J.Incorporating cyano groups to a conjugated polymer based on double B←N-bridged bipyridine units for unipolar n-type organic field-effect transistors.Org. Mater.,2021,3469-476.DOI:10.1055/a-1639-2383http://doi.org/10.1055/a-1639-2383.
Wang, M.; Hu, X. W.; Liu, P.; Li, W.; Gong, X.; Huang, F.; Cao, Y.Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells.J. Am. Chem. Soc.,2011,1339638-9641.DOI:10.1021/ja201131hhttp://doi.org/10.1021/ja201131h.
Cheng, P.; Yang, Y.Narrowing the band gap: the key to high-performance organic photovoltaics.Acc. Chem. Res.,2020,531218-1228.DOI:10.1021/acs.accounts.0c00157http://doi.org/10.1021/acs.accounts.0c00157.
Vella, J. H.; Huang, L. F.; Eedugurala, N.; Mayer, K. S.; Ng, T. N.; Azoulay, J. D.Broadband infrared photodetection using a narrow bandgap conjugated polymer.Sci. Adv.,2021,7eabg2418DOI:10.1126/sciadv.abg2418http://doi.org/10.1126/sciadv.abg2418.
Dou, L. T.; Liu, Y. S.; Hong, Z. R.; Li, G.; Yang, Y.Low-bandgap near-IR conjugated polymers/molecules for organic electronics.Chem. Rev.,2015,11512633-12665.DOI:10.1021/acs.chemrev.5b00165http://doi.org/10.1021/acs.chemrev.5b00165.
Wang, X. J.; Perzon, E.; Delgado, J. L.; de la Cruz, P.; Zhang, F. L.; Langa, F.; Andersson, M.; Inganas, O.Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative.Appl. Phys. Lett.,2004,855081-5083.DOI:10.1063/1.1825070http://doi.org/10.1063/1.1825070.
Blouin, N.; Michaud, A.; Leclerc, M.A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells.Adv. Mater.,2007,192295-2300.DOI:10.1002/adma.200602496http://doi.org/10.1002/adma.200602496.
Hu, X. M.; Zhong, C. X.; Li, X. Y.; Jia, X.; Wei, Y.; Xie, L. H.Synthesis and application of cyclopentadithiophene derivatives.Acta Chim. Sinica,2021,79953-966.DOI:10.6023/A21050196http://doi.org/10.6023/A21050196.
Yao, H. F.; Ye, L.; Zhang, H.; Li, S. S.; Zhang, S. Q.; Hou, J. H.Molecular design of benzodithiophene-based organic photovoltaic materials.Chem. Rev.,2016,1167397-7457.DOI:10.1021/acs.chemrev.6b00176http://doi.org/10.1021/acs.chemrev.6b00176.
Bin, H. J.; Zhong, L.; Zhang, Z. G.; Gao, L.; Yang, Y. K.; Xue, L. W.; Zhang, J.; Zhang, Z. J.; Li, Y. F.Alkoxy substituted benzodithiophene-alt-fluorobenzotriazole copolymer as donor in non-fullerene polymer solar cells.Sci. China Chem.,2016,591317-1322.
Li, Y. X.; Gu, M. C.; Pan, Z.; Zhang, B.; Yang, X. T.; Gu, J. W.; Chen, Y.Indacenodithiophene: a promising building block for high performance polymer solar cells.J. Mater. Chem. A,2017,510798-10814.DOI:10.1039/C7TA02562Ahttp://doi.org/10.1039/C7TA02562A.
Wadsworth, A.; Chen, H.; Thorley, K. J.; Cendra, C.; Nikolka, M.; Bristow, H.; Moser, M.; Salleo, A.; Anthopoulos, T. D.; Sirringhaus, H.; McCulloch, I.Modification of indacenodithiophene-based polymers and its impact on charge carrier mobility in organic thin-film transistors.J. Am. Chem. Soc.,2020,142652-664.DOI:10.1021/jacs.9b09374http://doi.org/10.1021/jacs.9b09374.
Sun, H. L.; Wang, L.; Wang, Y. F.; Guo, X. G.Imide-functionalized polymer semiconductors.Chem. Eur. J.,2019,2587-105.DOI:10.1002/chem.201803605http://doi.org/10.1002/chem.201803605.
Chen, Z. C.; Zhang, Y.; Wang, P.; Yang, J. X.; Yang, K.; Li, J. F.; Yang, J.; Li, Y. C.; Dong, H. L.; Guo, X. G.A class of electron-deficient units: fluorenone imide and its electron-withdrawing group-functionalized derivatives.Chem. Commun.,2022,5812467-12470.DOI:10.1039/D2CC04922Hhttp://doi.org/10.1039/D2CC04922H.
Lei, T.; Dou, J. H.; Cao, X. Y.; Wang, J. Y.; Pei, J.Electron-deficient poly(p-phenylene vinylene) provides electron mobility over 1 cm2V−1s−1under ambient conditions.J. Am. Chem. Soc.,2013,13512168-12171.DOI:10.1021/ja403624ahttp://doi.org/10.1021/ja403624a.
Wang, Y. Z.; Yu, Y. P.; Liao, H. L.; Zhou, Y. C.; McCulloch, I.; Yue, W.The chemistry and applications of heteroisoindigo units as enabling links for semiconducting materials.Acc. Chem. Res.,2020,532855-2868.DOI:10.1021/acs.accounts.0c00480http://doi.org/10.1021/acs.accounts.0c00480.
Wang, C.; Liu, F.; Chen, Q. M.; Xiao, C. Y.; Wu, Y. G.; Li, W. W.Benzothiadiazole-based conjugated polymers for organic solar cells.Chinese J. Polym. Sci.,2021,39525-536.DOI:10.1007/s10118-021-2537-8http://doi.org/10.1007/s10118-021-2537-8.
Wang, Y.; Michinobu, T.Benzothiadiazole and itsπ-extended, heteroannulated derivatives: useful acceptor building blocks for high-performance donor-acceptor polymers in organic electronics.J. Mater. Chem. C,2016,46200-6214.DOI:10.1039/C6TC01860Bhttp://doi.org/10.1039/C6TC01860B.
Feng, K.; Guo, H.; Wang, J. W.; Shi, Y. Q.; Wu, Z.; Su, M. Y.; Zhang, X. H.; Son, J. H.; Woo, H. Y.; Guo, X. G.Cyano-functionalized bithiophene imide-based n-type polymer semiconductors: synthesis, structure-property correlations, and thermoelectric performance.J. Am. Chem. Soc.,2021,1431539-1552.DOI:10.1021/jacs.0c11608http://doi.org/10.1021/jacs.0c11608.
Wakamiya, A.; Taniguchi, T.; Yamaguchi, S.Intramolecular B-N coordination as a scaffold for electron-transporting materials: synthesis and properties of boryl-substituted thienylthiazoles.Angew. Chem. Int. Ed.,2006,453170-3173.DOI:10.1002/anie.200504391http://doi.org/10.1002/anie.200504391.
Dou, C. D.; Long, X. J.; Ding, Z. C.; Xie, Z. Y.; Liu, J.; Wang, L. X.An electron-deficient building block based on the B←N unit: an electron acceptor for all-polymer solar cells.Angew. Chem. Int. Ed.,2016,551436-1440.DOI:10.1002/anie.201508482http://doi.org/10.1002/anie.201508482.
Zhao, R. Y.; Dou, C. D.; Liu, J.; Wang, L. X.An alternating polymer of two building blocks based on B←N unit: non-fullerene acceptor for organic photovoltaics.Chinese J. Polym. Sci.,2017,35198-206.DOI:10.1007/s10118-017-1878-9http://doi.org/10.1007/s10118-017-1878-9.
Dou, C. D.; Ding, Z. C.; Zhang, Z. J.; Xie, Z. Y.; Liu, J.; Wang, L. X.Developing conjugated polymers with high electron affinity by replacing a C-C Unit with a B←N unit.Angew. Chem. Int. Ed.,2015,543648-3652.DOI:10.1002/anie.201411973http://doi.org/10.1002/anie.201411973.
Miao, J. H.; Wang, Y. H.; Liu, J.; Wang, L. X.Organoboron molecules and polymers for organic solar cell applications.Chem. Soc. Rev.,2022,51153-187.DOI:10.1039/D1CS00974Ehttp://doi.org/10.1039/D1CS00974E.
Dong, C. S.; Deng, S. H.; Meng, B.; Liu, J.; Wang, L. X.A distannylated monomer of a strong electron-accepting organoboron building block: enabling acceptor-acceptor-type conjugated polymers for n-type thermoelectric applications.Angew. Chem. Int. Ed.,2021,6016184-16190.DOI:10.1002/anie.202105127http://doi.org/10.1002/anie.202105127.
Li, Y. C.; Meng, H. F.; Liu, T.; Xiao, Y. Q.; Tang, Z. H.; Pang, B.; Li, Y. Q.; Xiang, Y.; Zhang, G. Y.; Lu, X. H.; Yu, G.; Yan, H.; Zhan, C. L.; Huang, J. H.; Yao, J. N. 8.78% Efficient all-polymer solar cells enabled by polymer acceptors based on a B←N embedded electron-deficient unit.Adv. Mater.2019,31, 1904585.
Xiang, Y.; Meng, H. F.; Yao, Q.; Chang, Y.; Yu, H.; Guo, L.; Xue, Q. F.; Zhan, C. L.; Huang, J. H.; Chen, G. H.B←N bridged polymer acceptors with 900 nm absorption edges enabling high-performance all-polymer solar cells.Macromolecules,2020,539529-9538.DOI:10.1021/acs.macromol.0c01995http://doi.org/10.1021/acs.macromol.0c01995.
Huang, J. H.; Wang, X. L.; Xiang, Y.; Guo, L.; Chen, G. H.B←N coordination: from chemistry to organic photovoltaic materials.Adv. Energy Sustain. Res.,2021,22100016DOI:10.1002/aesr.202100016http://doi.org/10.1002/aesr.202100016.
Cao, Y. R.; Zhu, C. Z.; Barlog, M.; Barker, K. P.; Ji, X. Z.; Kalin, A. J.; Al-Hashimi, M.; Fang, L.Electron-deficient polycyclicπ-system fused with multiple B←N coordinate bonds.J. Org. Chem.,2021,862100-2106.DOI:10.1021/acs.joc.0c02052http://doi.org/10.1021/acs.joc.0c02052.
Shao, X. X.; Wang, J. H.; Marder, T. B.; Xie, Z. Y.; Liu, J.; Wang, L. X.N−B←N bridged bithiophene: a building block with reduced band gap to design n-type conjugated polymers.Macromolecules,2021,546718-6725.DOI:10.1021/acs.macromol.1c01055http://doi.org/10.1021/acs.macromol.1c01055.
Gapare, R. L.; Thompson, A.Substitution at boron in BODIPYs.Chem. Commun.,2022,587351-7359.DOI:10.1039/D2CC02362Hhttp://doi.org/10.1039/D2CC02362H.
Yoshii, R.; Yamane, H.; Tanaka, K.; Chujo, Y.Synthetic strategy for low-band gap oligomers and homopolymers using characteristics of thiophene-fused boron dipyrromethene.Macromolecules,2014,473755-3760.DOI:10.1021/ma500763chttp://doi.org/10.1021/ma500763c.
Zhang, Z.; Yuan, D. F.; Liu, X. S.; Kim, M. J.; Nashchadin, A.; Sharapov, V.; Yu, L. P.BODIPY-containing polymers with ultralow band gaps and ambipolar charge mobilities.Macromolecules,2020,532014-2020.DOI:10.1021/acs.macromol.9b02653http://doi.org/10.1021/acs.macromol.9b02653.
Kim, H. S.; Huseynova, G.; Noh, Y. Y.; Hwang, D. H.Modulation of majority charge carrier from hole to electron by incorporation of cyano groups in diketopyrrolopyrrole-based polymers.Macromolecules,2017,507550-7558.DOI:10.1021/acs.macromol.7b01524http://doi.org/10.1021/acs.macromol.7b01524.
Shao, X. X.; Liu, M. Y.; Liu, J.; Wang, L. X.A resonating B, N covalent bond and coordination bond in aromatic compounds and conjugated polymers.Angew. Chem. Int. Ed.,2022,61e202205893.
Nguyen, A. L.; Wang, M. D.; Bobadova-Parvanova, P.; Do, Q.; Zhou, Z. H.; Fronczek, F. R.; Smith, K. M.; Vicente, M. G. H.Synthesis and properties of B-cyano-BODIPYs.J. Porphyrins Phthalocyanines,2016,201409-1419.DOI:10.1142/S108842461650125Xhttp://doi.org/10.1142/S108842461650125X.
Li, L. L.; Nguyen, B.; Burgess, K.Functionalization of the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) core.Bioorg. Med. Chem. Lett.,2008,183112-3116.DOI:10.1016/j.bmcl.2007.10.103http://doi.org/10.1016/j.bmcl.2007.10.103.
Ma, S. S.; Song, Y.; Wang, Z. F.; He, B. T.; Yang, X. Y.; Li, L.; Xu, B. M.; Zhang, J.; Huang, F.; Cao, Y.Synthesis of medium bandgap copolymers based on benzotriazole for non-fullerene organic solar cells.Polymer,2019,179121580DOI:10.1016/j.polymer.2019.121580http://doi.org/10.1016/j.polymer.2019.121580.
Yan, H.; Chen, Z. H.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A.A high-mobility electron-transporting polymer for printed transistors.Nature,2009,457679-686.DOI:10.1038/nature07727http://doi.org/10.1038/nature07727.
Shao, X. X.; Dou, C. D.; Liu, J.; Wang, L. X.A new building block with intramolecular D-A character for conjugated polymers: ladder structure based on B←N unit.Sci. China Chem.,2019,621387-1392.DOI:10.1007/s11426-019-9518-7http://doi.org/10.1007/s11426-019-9518-7.
Wang, Y. H.; Wang, N.; Yang, Q. Q.; Zhang, J. D.; Liu, J.; Wang, L. X.A polymer acceptor containing the B←N unit for all-polymer solar cells with 14% efficiency.J. Mater. Chem. A,2021,921071-21077.DOI:10.1039/D1TA06041Dhttp://doi.org/10.1039/D1TA06041D.
0
Views
25
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution