a.Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
b.Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center For Physical & Chemical Analysis), Beijing 100089, China
tiangf@mail.buct.edu.cn
Scan for full text
Yu-Cheng Zi, Gao-Jie Wu, Dong-Xu Pei, et al. Decreasing the CTE of Thermoplastic Polyimide by Blending with a Thermosetting System. [J]. Chinese Journal of Polymer Science 41(6):956-961(2023)
Yu-Cheng Zi, Gao-Jie Wu, Dong-Xu Pei, et al. Decreasing the CTE of Thermoplastic Polyimide by Blending with a Thermosetting System. [J]. Chinese Journal of Polymer Science 41(6):956-961(2023) DOI: 10.1007/s10118-023-2941-3.
Blending the flexible system BPADA/PDA and the rigid system BPDA/PDA at prepolymer stage. The flexible system ensured the melt processing performance, while the rigid system inhibited the movement of molecular chains and reduce the free volume fraction, thereby reducing the CTE value.
A series of thermoplastic polyimide resins with a low coefficient of thermal expansion (CTE) were prepared by blending a rigid resin system 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA)/,p,-phenylenediamine (PDA) with a flexible resin system 4,4'-[isopropylidenebis(,p,-phenyleneoxy)]diphthalic anhydride (BPADA)/PDA. The effects of the blending ratio on the macromolecular coil size, free volume, and CTE of the mixed system were studied. The mixing is carried out in the prepolymer poly(amide acid) (PAA) stage, which makes the two systems more compatible and is conducive to the formation of a semi-interpenetrating network structure between the rigid molecular chains and flexible molecular chains. The flexible structure of the BPADA/PDA system is used to ensure the melt processing performance. The rigid characteristics of the BPDA/PDA system can inhibit the movement of molecular chains and reduce the free volume fraction, thereby reducing the CTE value. When the rigid system content reaches 30%, the CTE can be reduced to 38 ppm/K. This method provides a new approach for studying low CTE thermoplastic polyimide resins.
Coefficient of thermal expansion (CTE)Thermoplastic polyimideMelt processing propertyBlending
Imaizumi,S.;Ohtsuki,Y.;Yasuda,T.Printablepolymeractuatorsfromionicliquid,solublepolyimide,andubiquitouscarbonmaterials.ACS Appl. Mater. Interfaces2013,5,6307−6315..
Kim,I.C.;Park,K.W.;TakT.M.Synthesisandcharacterizationofsolublepolyimidesanditsultrafiltrationmembraneperformances.J. Appl. Polym. Sci.1999,73,907−918..
Mittal,K.L.Polyimides:synthesis,characterization,andapplications.Polym. Compos.1982,3,245..
Makino,D.ApplicationofpolyimideresintosemiconductordevicesinJapan.IEEE. Electr. Ins. Mag.1988,4,15−23..
Shukla,P.;Saxena,P.Polymernanocompositesinsensorapplications:areviewonpresenttrendsandfuturescope.Chinese J. Polym. Sci.2021,39,665−691..
Mustafa,C.;Emre,A.Characterizationofcarbonfiber-reinforcedthermoplasticandthermosettingpolyimidematrixcompositesmanufacturedbyusingvarioussynthesizedPIprecursorresins.Compos. Part B-Eng.2022,231,109559..
Xu,J.;Huang,X.;Davim,J.P.;Ji,M.;Chen,M.OnthemachiningbehaviorofcarbonfiberreinforcedpolyimideandPEEKthermoplasticcomposites.Polym. Compos.2020,41,3649−3663..
Ye,W.L.;Wu,W.Z.;Hu,X.;Lin,G.G.3Dprintingofcarbonnanotubesreinforcedthermoplasticpolyimidecompositeswithcontrollablemechanicalandelectricalperformance.Compos. Sci. Technol.2019,182,107671..
Byberg,K.I.;Gebisa,A.W.;Lemu,H.G.MechanicalpropertiesofULTEM9085materialprocessedbyfuseddepositionmodeling.Polym. Test.2018,72,335−347..
Hu,J.;Wang,J.;Qi,S.Thermoplasticandsolubleco-polyimideresinsfabricatedviatheincorporationof2,3,3’,4’-biphenyltetracarboxylicdianhydride.High. Perform. Polym.2019,31,1272−1279..
Yi,L.;Li,C.;Huang,W.Solublepolyimidesfrom4,4’-diaminodiphenyletherwithoneortwotert-butylpedantgroups.Polymer2015,80,67−75..
Kim,S.D.;Lee,S.;Heo,J.Solublepolyimideswithtrifluoromethylpendentgroups.Polymer2013,54,5648−5654..
Sensui,N.;Ishii,J.;Takata,A.Ultra-lowCTEandimprovedtoughnessofPMDA/PDApolyimide-basedmolecularcompositescontainingasymmetricBPDA-typepolyimides.High. Perform. Polym.2009,21,709−728..
Hasegawa,M.;Watanabe,Y.;Tsukuda,S.Solution-processablecolorlesspolyimideswithultralowcoefficientsofthermalexpansionforoptoelectronicapplications.Polym. Int.2016,65,1063−1073..
Yi,J.;Liu,C.;Tian,Y.;Wang,K.;Liu,X.;Luo,L.Improvingdimensionalstabilityathightemperatureandtoughnessofpolyimidefilmsviaadjustableentanglementdensity.Polymer2021,218,123488..
Gao,G.;Mao,D.;Fan,B.;Guan,C.Effectofwetexpansionbehavioronpolyimidemembranediffractivelens.Coatings2019,9,559..
Yin,J.;Mao,D.;Fan,B.Copolyamide-imidemembranewithlowCTEandCMEforpotentialspaceopticalapplications.Polymers2021,13,1001..
Jung,Y.;Yang,Y.;Kim,S.Structuralandcompositionaleffectsonthermalexpansionbehaviorinpolyimidesubstratesofvaryingthicknesses.Eur. Polym. J.2013,49,3642−3650..
Tan,Y.;Zhang,Y.;Jiang,G.Preparationandpropertiesofinherentlyblackpolyimidefilmswithextremelylowcoefficientsofthermalexpansionandpotentialapplicationsforblackflexiblecoppercladlaminates.Polymers2020,12,576..
Yu,X.H.;Liu,J.N.;Wu,D.Y.ColorlessPIstructuredesignandevaluationforachievinglowCTEtarget.Mater. Today Commun.2019,21,100562..
Yang,Z.;Guo,H.;Kang,C.Synthesisandcharacterizationofamide-bridgedcolorlesspolyimidefilmswithlowCTEandhighopticalperformanceforflexibleOLEDdisplays.Polym. Chem.2021,12,5364−5376..
Mushtaq,N.;Wang,Q.;Chen,G.Synthesisofpolyamide-imideswithdifferentmonomersequenceandeffectontransparencyandthermalproperties.Polymer2020,190,122218..
Bai,L.;Zhai,L.;He,M.H.Thermalexpansionbehaviorofpoly(amide-imide)filmswithultrahightensilestrengthandultralowCTE.Chinese J. Polym. Sci.2020,38,748−758..
Tsai,M.H.;Huang,Y.C.;Tseng,I.H.Thermalandmechanicalpropertiesofpolyimide/nano-silicahybridfilms.Thin Solid. Films.2011,519,5238−5242..
Luo,J.;Wu,Y.;Sun,Y.;Wang,G.;Liu,Y.;Zhao,X.;Ding,G.PreparationandcharacterizationofhighthermalconductivityandlowCTEpolyimidecompositereinforcedwithdiamondnanoparticles/SiCwhiskersfor3DICinterposerRDLdielectric.Appl. Sci.2019,9,1962..
Zhou,H.;Lei,H.;Wang,J.Breakingthemutualrestraintbetweenlowpermittivityandlowthermalexpansioninpolyimidefilmsviaabranchedcrosslinkstructure.Polymer2019,162,116−120..
Han,S.;Li,Y.;Hao,F.Ultra-lowdielectricconstantpolyimides:Combinedeffortsoffluorinationandmicro-branchedcrosslinkstructure.Eur. Polym. J.2021,143,110206..
Zhi,X.;Jiang,G.;Zhang,Y.Preparationandpropertiesofcolorlessandtransparentsemi-alicyclicpolyimidefilmswithenhancedhigh-temperaturedimensionalstabilityviaincorporationofalkyl-substitutedbenzanilideunits.J. Appl. Polym. Sci.2022,139,51544..
Peng,W.F.;Lei,H.Y.;Zhang,X.X.Fluorinesubstitutioneffectonthematerialpropertiesintransparentaromaticpolyimides.Chinese J. Polym. Sci.2022,40,781−788..
Lao,H.;Mushtaq,N.;Chen,G.Synthesisandpropertiesoftransparentrandomandmulti-blockpolyamide-imidefilmswithhighmodulusandlowCTE.Eur. Polym. J.2021,153,110512..
Li,X.;Lei,H.;Guo,J.;Wang,J.CompositiondesignandpropertiesinvestigationofBPDA/PDA/TFDBco-polyimidefilmswithlowdielectricpermittivity.J. Appl. Polym. Sci.2019,136,47989..
Hao,F.Y.;Wang,J.H.;Qi,S.L.Structuresandpropertiesofpolyimidewithdifferentpre-imidizationdegrees.Chinese J. Polym. Sci.2020,38,840−846..
0
Views
9
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution