a.Zhuhai Fudan Innovation Institution, Zhuhai 518057, China
b.Department of Environmental Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau 999078, China
c.Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
yzr@whu.edu.cn(Z.R.Y.)
liuyq@iccas.ac.cn(Y.Q.L.)
Scan for full text
Kai-Qing Liu, Yuan-He Gu, Zheng-Ran Yi, et al. Diketopyrrolopyrrole-based Conjugated Polymers as Representative Semiconductors for High-Performance Organic Thin-Film Transistors and Circuits. [J]. Chinese Journal of Polymer Science 41(5):671-682(2023)
Kai-Qing Liu, Yuan-He Gu, Zheng-Ran Yi, et al. Diketopyrrolopyrrole-based Conjugated Polymers as Representative Semiconductors for High-Performance Organic Thin-Film Transistors and Circuits. [J]. Chinese Journal of Polymer Science 41(5):671-682(2023) DOI: 10.1007/s10118-023-2943-1.
The review summarizes the progress in molecular design, synthesis and solution-processing of DPP-based conjugated polymers for OTFT devices and circuits. The important roles of design strategies, synthesis methods and processing techniques are highlighted and discussed.
Since the first report of diketopyrrolopyrrole (DPP)-based conjugated polymers for organic thin-film transistors (OTFTs), these polymers have attracted great attention as representative semiconductors in high-performance OTFTs. Through unremitting efforts in molecular-structure regulation and device optimization, significant mobilities exceeding 10 cm,2,·V,–1,·s,–1,have been achieved in OTFTs, greatly promoting the applied development of organic circuits. In this review, we summarize our progress in molecular design, synthesis and solution-processing of DPP-based conjugated polymers for OTFT devices and circuits, focusing on the roles of design strategies, synthesis methods and processing techniques. Furthermore, the remaining issues and future outlook in the field are briefly discussed.
DiketopyrrolopyrrolePolymer semiconductorsOrganic thin-film transistorOrganic circuits
Wu, Y.; Zhao, Y.; Liu, Y.Toward efficient charge transport of polymer-based organic field-effect transistors: molecular design, processing, and functional utilization.Acc. Mater. Res.,2021,21047-1058.DOI:10.1021/accountsmr.1c00149http://doi.org/10.1021/accountsmr.1c00149.
Yang, J.; Zhao, Z.; Wang, S.; Guo, Y.; Liu, Y.Insight into high-performance conjugated polymers for organic field-effect transistors.Chem,2018,42748-2785.DOI:10.1016/j.chempr.2018.08.005http://doi.org/10.1016/j.chempr.2018.08.005.
Yan, Y.; Zhao, Y.; Liu, Y.Recent progress in organic field-effect transistor-based integrated circuits.J. Polym. Sci.,2022,60311-327.DOI:10.1002/pol.20210457http://doi.org/10.1002/pol.20210457.
Pei, K.; Chen, M.; Zhou, Z.; Li, H.; Chan, P. K. L.Overestimation of carrier mobility in organic thin film transistors due to unaccounted fringe currents.ACS Appl. Electron. Mater.,2019,1379-388.DOI:10.1021/acsaelm.8b00097http://doi.org/10.1021/acsaelm.8b00097.
Snyder, G. J.; Snyder, A. H.; Wood, M.; Gurunathan, R.; Snyder, B. H.; Niu, C.Weighted mobility.Adv. Mater.,2020,322001537DOI:10.1002/adma.202001537http://doi.org/10.1002/adma.202001537.
Fratini, S.; Ciuchi, S.; Mayou, D.; de Laissardière, G. T.; Troisi, A.A map of high-mobility molecular semiconductors.Nat. Mater.,2017,16998-1002.DOI:10.1038/nmat4970http://doi.org/10.1038/nmat4970.
Takimiya, K.; Shinamura, S.; Osaka, I.; Miyazaki, E.Thienoacene-based organic semiconductors.Adv. Mater.,2011,234347-4370.DOI:10.1002/adma.201102007http://doi.org/10.1002/adma.201102007.
Zhang, Z.; Peng, B.; Ji, X.; Pei, K.; Chan, P. K. L.Marangoni-effect-assisted bar-coating method for high-quality organic crystals with compressive and tensile strains.Adv. Funct. Mater.,2017,271703443DOI:10.1002/adfm.201703443http://doi.org/10.1002/adfm.201703443.
Wang, Y.; Hasegawa, T.; Matsumoto, H.; Michinobu, T.Significant improvement of unipolar N-type transistor performances by manipulating the coplanar backbone conformation of electron-deficient polymersviahydrogen bonding.J. Am. Chem. Soc.,2019,1413566-3575.DOI:10.1021/jacs.8b12499http://doi.org/10.1021/jacs.8b12499.
Wadsworth, A.; Chen, H.; Thorley, K. J.; Cendra, C.; Nikolka, M.; Bristow, H.; Moser, M.; Salleo, A.; Anthopoulos, T. D.; Sirringhaus, H.; McCulloch, I.Modification of indacenodithiophene-based polymers and its impact on charge carrier mobility in organic thin-film transistors.J. Am. Chem. Soc.,2020,142652-664.DOI:10.1021/jacs.9b09374http://doi.org/10.1021/jacs.9b09374.
Gao, Y.; Deng, Y.; Tian, H.; Zhang, J.; Yan, D.; Geng, Y.; Wang, F.Multifluorination toward high-mobility ambipolar and unipolar n-type donor-acceptor conjugated polymers based on isoindigo.Adv. Mater.,2017,291606217DOI:10.1002/adma.201606217http://doi.org/10.1002/adma.201606217.
Xu, L.; Zhao, Z.; Xiao, M.; Yang, J.; Xiao, J.; Yi, Z.; Wang, S.; Liu, Y..π-Extended isoindigo-based derivative: a promising electron-deficient building block for polymer semiconductors.ACS Appl. Mater. Interfaces,2017,940549-40555.DOI:10.1021/acsami.7b13570http://doi.org/10.1021/acsami.7b13570.
Yan, X.; Xiong, M.; Li, J. T.; Zhang, S.; Ahmad, Z.; Lu, Y.; Wang, Z. Y.; Yao, Z. F.; Wang, J. Y.; Gu, X.; Lei, T.Pyrazine-flanked diketopyrrolopyrrole (DPP): a new polymer building block for high-performance n-type organic thermoelectrics.J. Am. Chem. Soc.,2019,14120215-20221.DOI:10.1021/jacs.9b10107http://doi.org/10.1021/jacs.9b10107.
Yan, X.; Xiong, M.; Deng, X. Y.; Liu, K. K.; Li, J. T.; Wang, X. Q.; Zhang, S.; Prine, N.; Zhang, Z.; Huang, W.; Wang, Y.; Wang, J. Y.; Gu, X.; So, S. K.; Zhu, J.; Lei, T.Approaching disorder-tolerant semiconducting Polymers.Nat. Commun.,2021,125723DOI:10.1038/s41467-021-26043-yhttp://doi.org/10.1038/s41467-021-26043-y.
Xiong, M.; Yan, X.; Li, J.-T.; Zhang, S.; Cao, Z.; Prine, N.; Lu, Y.; Wang, J. Y.; Gu, X.; Lei, T.Efficient N-doping of polymeric semiconductors through controlling the dynamics of solution-state polymer aggregates.Angew. Chem.,2021,1338270-8278.DOI:10.1002/ange.202015216http://doi.org/10.1002/ange.202015216.
Feng, K.; Guo, H.; Sun, H.; Guo, X.N-type organic and polymeric semiconductors based on bithiophene imide derivatives.Acc. Chem. Res.,2021,543804-3817.DOI:10.1021/acs.accounts.1c00381http://doi.org/10.1021/acs.accounts.1c00381.
Chen, X. X.; Li, J. T.; Fang, Y. H.; Deng, X. Y.; Wang, X. Q.; Liu, G.; Wang, Y.; Gu, X.; Jiang, S. D.; Lei, T.High-mobility semiconducting polymers with different spin ground states.Nat. Commun.,2022,132258DOI:10.1038/s41467-022-29918-whttp://doi.org/10.1038/s41467-022-29918-w.
Chen, Z.; Lee, M. J.; Shahid Ashraf, R.; Gu, Y.; Albert-Seifried, S.; Meedom Nielsen, M.; Schroeder, B.; Anthopoulos, T. D.; Heeney, M.; McCulloch, I.; Sirringhaus, H.High-performance ambipolar diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymer field-effect transistors with balanced hole and electron mobilities.Adv. Mater.,2012,24647-652.DOI:10.1002/adma.201102786http://doi.org/10.1002/adma.201102786.
Lee, J. S.; Son, S. K.; Song, S.; Kim, H.; Lee, D. R.; Kim, K.; Ko, M. J.; Choi, D. H.; Kim, B.; Cho, J. H.Importance of solubilizing group and backbone planarity in low band gap polymers for high performance ambipolar field-effect transistors.Chem. Mater.,2012,241316-1323.DOI:10.1021/cm2037487http://doi.org/10.1021/cm2037487.
Yi, Z.; Wang, S.; Liu, Y.Design of high-mobility diketopyrrolopyrrole-basedπ-conjugated copolymers for organic thin-film transistors.Adv. Mater.,2015,273589-3606.DOI:10.1002/adma.201500401http://doi.org/10.1002/adma.201500401.
Ran, Y.; Guo, Y.; Liu, Y.Organostannane-free polycondensation and eco-friendly processing strategy for the design of semiconducting polymers in transistors.Mater. Horiz.,2020,71955-1970.DOI:10.1039/D0MH00138Dhttp://doi.org/10.1039/D0MH00138D.
Li, J.; Zhao, Y.; Tan, H. S.; Guo, Y.; Di, C. A.; Yu, G.; Liu, Y.; Lin, M.; Lim, S. H.; Zhou, Y.; Su, H.; Ong, B. S.A stable solution-processed polymer semiconductor with record high-mobility for printed transistors.Sci. Rep.,2012,2754-763.DOI:10.1038/srep00754http://doi.org/10.1038/srep00754.
Grozema, F. C.; van Duijnen, P.Th.; Berlin, Y. A.; Ratner, M. A.; Siebbeles, L. D. A. Intramolecular charge transport along isolated chains of conjugated polymers: effect of torsional disorder and polymerization defects.J. Phys. Chem. B,2002,1067791-7795.DOI:10.1021/jp021114vhttp://doi.org/10.1021/jp021114v.
Yi, Z.; Jiang, Y.; Xu, L.; Zhong, C.; Yang, J.; Wang, Q.; Xiao, J.; Liao, X.; Wang, S.; Guo, Y.; Hu, W.; Liu, Y.Triple acceptors in a polymeric architecture for balanced ambipolar transistors and high-gain inverters.Adv. Mater.,2018,301801951DOI:10.1002/adma.201801951http://doi.org/10.1002/adma.201801951.
Sun, B.; Hong, W.; Yan, Z.; Aziz, H.; Li, Y.Record high electron mobility of 6.3 cm2V−1s−1achieved for polymer semiconductors using a new building block.Adv. Mater.,2014,262636-2642.DOI:10.1002/adma.201305981http://doi.org/10.1002/adma.201305981.
Chen, M. S.; Lee, O. P.; Niskala, J. R.; Yiu, A. T.; Tassone, C. J.; Schmidt, K.; Beaujuge, P. M.; Onishi, S. S.; Toney, M. F.; Zettl, A.; Fréchet, J. M. J.Enhanced solid-state order and field-effect hole mobility through control of nanoscale polymer aggregation.J. Am. Chem. Soc.,2013,13519229-19236.DOI:10.1021/ja4088665http://doi.org/10.1021/ja4088665.
Lei, T.; Dou, J. H.; Cao, X. Y.; Wang, J. Y.; Pei, J.A BDOPV-based donor-acceptor polymer for high-performance n-type and oxygen-doped ambipolar field-effect transistors.Adv. Mater.,2013,256589-6593.DOI:10.1002/adma.201302278http://doi.org/10.1002/adma.201302278.
Sirringhaus, H..25thAnniversary article: organic field-effect transistors: the path beyond amorphous silicon.Adv. Mater.,2014,261319-1335.DOI:10.1002/adma.201304346http://doi.org/10.1002/adma.201304346.
Guo, X.; Facchetti, A.; Marks, T. J.Imide- and amide-functionalized polymer semiconductors.Chem. Rev.,2014,1148943-9021.DOI:10.1021/cr500225dhttp://doi.org/10.1021/cr500225d.
Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. a. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M.Two-dimensional charge transport in self-organized, high-mobility conjugated polymers.Nature,1999,401685-688.DOI:10.1038/44359http://doi.org/10.1038/44359.
McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney, M. F.Liquid-crystalline semiconducting polymers with high charge-carrier mobility.Nat. Mater.,2006,5328-333.DOI:10.1038/nmat1612http://doi.org/10.1038/nmat1612.
Yi, Z.; Sun, X.; Zhao, Y.; Guo, Y.; Chen, X.; Qin, J.; Yu, G.; Liu, Y.Diketopyrrolopyrrole-basedπ-conjugated copolymer containingβ-unsubstituted quintetthiophene unit: a promising material exhibiting high hole-mobility for organic thin-film transistors.Chem. Mater.,2012,244350-4356.DOI:10.1021/cm302341mhttp://doi.org/10.1021/cm302341m.
Yi, Z.; Ma, L.; Chen, B.; Chen, D.; Chen, X.; Qin, J.; Zhan, X.; Liu, Y.; Ong, W. J.; Li, J.Effect of the longerβ-unsubstituted oliogothiophene unit (6T and 7T) on the organic thin-film transistor performances of diketopyrrolopyrrole-oliogo- thiophene copolymers.Chem. Mater.,2013,254290-4296.DOI:10.1021/cm402381whttp://doi.org/10.1021/cm402381w.
Chen, H.; Guo, Y.; Yu, G.; Zhao, Y.; Zhang, J.; Gao, D.; Liu, H.; Liu, Y.Highlyπ-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors.Adv. Mater.,2012,244618-4622.DOI:10.1002/adma.201201318http://doi.org/10.1002/adma.201201318.
Pan, H.; Li, Y.; Wu, Y.; Liu, P.; Ong, B. S.; Zhu, S.; Xu, G.Low-temperature, solution-processed, high-mobility polymer semiconductors for thin-film transistors.J. Am. Chem. Soc.,2007,1294112-4113.DOI:10.1021/ja067879ohttp://doi.org/10.1021/ja067879o.
Sonar, P.; Singh, S. P.; Li, Y.; Soh, M. S.; Dodabalapur, A.A low-bandgap diketopyrrolopyrrole-benzothiadiazole-based copolymer for high-mobility ambipolar organic thin-film transistors.Adv. Mater.,2010,225409-5413.DOI:10.1002/adma.201002973http://doi.org/10.1002/adma.201002973.
Yamashita, Y.Development of high-performance n-type organic field-effect transistors based on nitrogen heterocycles.Chem. Lett.,2009,38870-875.DOI:10.1246/cl.2009.870http://doi.org/10.1246/cl.2009.870.
Li, P.; Wang, H.; Ma, L.; Xu, L.; Xiao, F.; Yi, Z.; Liu, Y.; Wang, S.An isoindigo-bithiazole-based acceptor-acceptor copolymer for balanced ambipolar organic thin-film transistors.Sci. China Chem.,2016,59679-683.DOI:10.1007/s11426-015-0511-9http://doi.org/10.1007/s11426-015-0511-9.
Cheng, C.; Yu, C.; Guo, Y.; Chen, H.; Fang, Y.; Yu, G.; Liu, Y.A diketopyrrolopyrrole–thiazolothiazole copolymer for high performance organic field-effect transistors.Chem. Commun.,2013,491998-2000.DOI:10.1039/c2cc38811ahttp://doi.org/10.1039/c2cc38811a.
Li, P.; Xu, L.; Shen, H.; Duan, X.; Zhang, J.; Wei, Z.; Yi, Z.; Di, C.; Wang, S.D–A1–D–A2 copolymer based on pyridine-capped diketopyrrolopyrrole with fluorinated benzothiadiazole for high-performance ambipolar organic thin-film transistors.ACS Appl. Mater. Interfaces,2016,88620-8626.DOI:10.1021/acsami.5b12050http://doi.org/10.1021/acsami.5b12050.
Yang, J.; Wang, H.; Chen, J.; Huang, J.; Jiang, Y.; Zhang, J.; Shi, L.; Sun, Y.; Wei, Z.; Yu, G.; Guo, Y.; Wang, S.; Liu, Y.Bis-diketopyrrolopyrrole moiety as a promising building block to enable balanced ambipolar polymers for flexible transistors.Adv. Mater.,2017,291606162DOI:10.1002/adma.201606162http://doi.org/10.1002/adma.201606162.
Shen, T.; Li, W.; Zhao, Y.; Liu, Y.; Wang, Y.An all-C–H-activation strategy to rapidly synthesize high-mobility well-balanced ambipolar semiconducting polymers.Matter,2022,51953-1968.DOI:10.1016/j.matt.2022.04.008http://doi.org/10.1016/j.matt.2022.04.008.
Babel, A.; Jenekhe, S. A.Alkyl chain length dependence of the field-effect carrier mobility in regioregular poly(3-alkylthiophene)s.Synth. Metals,2005,148169-173.DOI:10.1016/j.synthmet.2004.09.033http://doi.org/10.1016/j.synthmet.2004.09.033.
Yi, Z.; Ma, L.; Li, P.; Xu, L.; Zhan, X.; Qin, J.; Chen, X.; Liu, Y.; Wang, S.Enhancing the organic thin-film transistor performance of diketopyrrolopyrrole–benzodithiophene copolymersviathe modification of both conjugated backbone and side chain.Polym. Chem.,2015,65369-5375.DOI:10.1039/C5PY00704Fhttp://doi.org/10.1039/C5PY00704F.
Zhou, D.; Doumon, Y. N.; Abdu-Aguye, M.; Bartesaghi, D.; Loi, A. M.; Koster, L. J. A.; Chiechi, C. R.; Hummelen, C. J.High-quality conjugated polymersviaone-pot Suzuki-Miyaura homopolymerization.RSC Adv.,2017,727762-27769.DOI:10.1039/C7RA03539Jhttp://doi.org/10.1039/C7RA03539J.
Murage, J.; Eddy, J. W.; Zimbalist, J. R.; McIntyre, T. B.; Wagner, Z. R.; Goodson, F. E.Effect of reaction parameters on the molecular weights of polymers formed in a suzuki polycondensation.Macromolecules,2008,417330-7338.DOI:10.1021/ma801275yhttp://doi.org/10.1021/ma801275y.
Carrillo, J. A.; Turner, M. L.; Ingleson, M. J.A general protocol for the polycondensation of thienylN-methyliminodiacetic acid boronate esters to form high molecular weight copolymers.J. Am. Chem. Soc.,2016,13813361-13368.DOI:10.1021/jacs.6b07666http://doi.org/10.1021/jacs.6b07666.
Hoch, M.Organotin compounds in the environment—an overview.Appl. Geochem.,2001,16719-743.DOI:10.1016/S0883-2927(00)00067-6http://doi.org/10.1016/S0883-2927(00)00067-6.
Wang, Q.; Takita, R.; Kikuzaki, Y.; Ozawa, F.Palladium-catalyzed dehydrohalogenative polycondensation of 2-bromo-3-hexylthiophene: an efficient approach to head-to-tail poly(3-hexylthiophene).J. Am. Chem. Soc.,2010,13211420-11421.DOI:10.1021/ja105767zhttp://doi.org/10.1021/ja105767z.
Ponder Jr, J. F.; Chen, H.; Luci, A. M. T.; Moro, S.; Turano, M.; Hobson, A. L.; Collier, G. S.; Perdigão, L. M. A.; Moser, M.; Zhang, W.; Costantini, G.; Reynolds, J. R.; McCulloch, I.Low-defect, high molecular weight indacenodithiophene (IDT) polymersviaa C–H activation: evaluation of a simpler and greener approach to organic electronic materials.ACS Mater. Lett.,2021,31503-1512.DOI:10.1021/acsmaterialslett.1c00478http://doi.org/10.1021/acsmaterialslett.1c00478.
Bura, T.; Beaupré, S.; Légaré, M. A.; Quinn, J.; Rochette, E.; Terence Blaskovits, J.; Fontaine, F. G.; Pron, A.; Li, Y.; Leclerc, M.Direct heteroarylation polymerization: guidelines for defect-free conjugated polymers.Chem. Sci.,2017,83913-3925.DOI:10.1039/C7SC00589Jhttp://doi.org/10.1039/C7SC00589J.
Yi, Z.; Yan, Y.; Wang, H.; Li, W.; Liu, K.; Zhao, Y.; Gu, G.; Liu, Y.Chain-extending polymerization for significant improvement in organic thin-film transistor performance.ACS Appl. Mater. Interfaces,2022,1436918-36926.DOI:10.1021/acsami.2c10133http://doi.org/10.1021/acsami.2c10133.
Zhang, F.; Di, C.; Berdunov, N.; Hu, Y.; Hu, Y.; Gao, X.; Meng, Q.; Sirringhaus, H.; Zhu, D.Ultrathin film organic transistors: precise control of semiconductor thicknessviaspin-coating.Adv. Mater.,2013,251401-1407.DOI:10.1002/adma.201204075http://doi.org/10.1002/adma.201204075.
Luo, C.; Kyaw, A. K. K.; Perez, L. A.; Patel, S.; Wang, M.; Grimm, B.; Bazan, G. C.; Kramer, E. J.; Heeger, A. J.General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility.Nano Lett.,2014,142764-2771.DOI:10.1021/nl500758whttp://doi.org/10.1021/nl500758w.
Bucella, S. G.; Luzio, A.; Gann, E.; Thomsen, L.; McNeill, C. R.; Pace, G.; Perinot, A.; Chen, Z.; Facchetti, A.; Caironi, M.Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics.Nat. Commun.,2015,68394DOI:10.1038/ncomms9394http://doi.org/10.1038/ncomms9394.
Giri, G.; Verploegen, E.; Mannsfeld, S. C. B.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z.Tuning charge transport in solution-sheared organic semiconductors using lattice strain.Nature,2011,480504-508.DOI:10.1038/nature10683http://doi.org/10.1038/nature10683.
Zhang, L.; Liu, H.; Zhao, Y.; Sun, X.; Wen, Y.; Guo, Y.; Gao, X.; Di, C.; Yu, G.; Liu, Y.Inkjet printing high-resolution, large-area graphene patterns by coffee-ring lithography.Adv. Mater.,2012,24436-440.DOI:10.1002/adma.201103620http://doi.org/10.1002/adma.201103620.
Jiang, Y.; Chen, J.; Sun, Y.; Li, Q.; Cai, Z.; Li, J.; Guo, Y.; Hu, W.; Liu, Y.Fast deposition of aligning edge-on polymers for high-mobility ambipolar transistors.Adv. Mater.,2019,311805761DOI:10.1002/adma.201805761http://doi.org/10.1002/adma.201805761.
Chen, L.; Chi, S.; Zhao, K.; Liu, J.; Yu, X.; Han, Y.Aligned films of the DPP-based conjugated polymer by solvent vapor enhanced drop casting.Polymer,2016,104123-129.DOI:10.1016/j.polymer.2016.10.005http://doi.org/10.1016/j.polymer.2016.10.005.
Zhao, Z.; Liu, H.; Zhao, Y.; Cheng, C.; Zhao, J.; Tang, Q.; Zhang, G.; Liu, Y.Anisotropic charge-carrier transport in high-mobility donor–acceptor conjugated polymer semiconductor films.Chem. Asian J.,2016,112725-2729.DOI:10.1002/asia.201600082http://doi.org/10.1002/asia.201600082.
E. H. Gerhard Klink, A. Drost, D. Hemmetzberger, K. Bock,Conference Polytronic2005,Oct. 23–26,Wroclaw, Poland,2005.
Kang, B.; Lee, W. H.; Cho, K.Recent advances in organic transistor printing processes.ACS Appl. Mater. Interfaces,2013,52302-2315.DOI:10.1021/am302796zhttp://doi.org/10.1021/am302796z.
Stucchi, E.; Dell’Erba, G.; Colpani, P.; Kim, Y. H.; Caironi, M.Low-voltage, printed, all-polymer integrated circuits employing a low-leakage and high-yield polymer dielectric.Adv. Electr. Mater.,2018,41800340DOI:10.1002/aelm.201800340http://doi.org/10.1002/aelm.201800340.
Yuvaraja, S.; Nawaz, A.; Liu, Q.; Dubal, D.; Surya, S. G.; Salama, K. N.; Sonar, P..Organic field-effect transistor-based flexible sensors.Chem. Soc. Rev.,2020,493423-3460.DOI:10.1039/C9CS00811Jhttp://doi.org/10.1039/C9CS00811J.
Liu, K.; Ouyang, B.; Guo, X.; Guo, Y.; Liu, Y.Advances in flexible organic field-effect transistors and their applications for flexible electronics.npj Flex Electr.,2022,61DOI:10.1038/s41528-022-00133-3http://doi.org/10.1038/s41528-022-00133-3.
Lee, Y. H.; Jang, M.; Lee, M. Y.; Kweon, O. Y.; Oh, J. H.Flexible field-effect transistor-type sensors based on conjugated molecules.Chem,2017,3724-763.DOI:10.1016/j.chempr.2017.10.005http://doi.org/10.1016/j.chempr.2017.10.005.
Ma, L.; Yi, Z.; Wang, S.; Liu, Y.; Zhan, X.Highly sensitive thin film phototransistors based on a copolymer of benzodithiophene and diketopyrrolopyrrole.J. Mater. Chem. C,2015,31942-1948.DOI:10.1039/C4TC02462Ahttp://doi.org/10.1039/C4TC02462A.
Qin, M. C.; Li, Q.-Y.; Zhang, F.; Liu, K.; Liu, Y. W.; Zhu, M. L.; Zhao, Z. Y.; Pan, Z. C.; Bian, Y. S.; Guo, Y. L.; Liu, Y. Q.High performance near-infrared organic photodetectors based on narrow-bandgap diketopyrrolopyrrole-based polymer.Acta Polymerica Sinica (in Chinese),2022,53405-413.
Gu, P.Hao.; Du, S.; Xie, C. Y.; Cai, B. M.; Zhang, S.; Shi, Y. X. 74-2: The excellent mechanical properties of novel polymer film and it’s application in the foldable AMOLED displays.SID Sympos. Digest of Technical Papers,2019,501056-1059.DOI:10.1002/sdtp.13109http://doi.org/10.1002/sdtp.13109.
Liu, Y.; Zhao, Z.; Zhu, M.; Huang, X.; Wei, X.; Chen, H.; Chen, J.; Guo, Y.; Liu, Y.Realizing diketopyrrolopyrrole polymer-based uniform large-area transistors for active circuitviaprotonic acid mediated molecular self-assembly.Adv. Electr. Mater.,2022,82100881DOI:10.1002/aelm.202100881http://doi.org/10.1002/aelm.202100881.
0
Views
17
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution