a.Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b.School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
c.Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
lixiaojun@iccas.ac.cn(X.J.L.)
liyf@iccas.ac.cn(Y.F.L.)
Scan for full text
Xiao-Jun Li, Guang-Pei Sun, Yu-Fei Gong, et al. Recent Research Progress of
Xiao-Jun Li, Guang-Pei Sun, Yu-Fei Gong, et al. Recent Research Progress of
All polymer solar cells (all-PSCs) possess the advantages of mechanical flexibility and morphology stability. In this review, we introduce the development history of the,n,-type conjugated polymer (,n,-CP), especially the recent research progress of the polymerized small molecule acceptors. In addition, the challenges and prospects of the,n,-CP and all-PSCs are analyzed and discussed.
The active layer of all polymer solar cells (all-PSCs) is composed of a blend of a,p,-type conjugated polymer (,p,-CP) as donor and an,n,-type conjugated polymer (,n,-CP) as acceptor. All-PSCs possess the advantages of light weight, thin active layer, mechanical flexibility, low cost solution processing and high stability, but the power conversion efficiency (PCE) of the all-PSCs was limited by the poor photovoltaic performance of the,n,-CP acceptors before 2016. Since the report of the strategy of polymerized small molecule acceptors (PSMAs) in 2017, the photovoltaic performance of the PSMA-based,n,-CPs improved rapidly, benefitted from the development of the A-DA’D-A type small molecule acceptors (SMAs). PCE of the all-PSCs based on the PSMA acceptors reached 17%−18% recently. In this review article, we will introduce the development history of the,n,-CPs, especially the recent research progress of the PSMAs. Particularly, the structure-property relationship of the PSMAs is introduced and discussed. Finally, current challenges and prospects of the,n,-CP acceptors are analyzed and discussed.
n-Type conjugated polymersAll-polymer solar cellsPolymer acceptorsPolymerized small molecule acceptors
Yang, F.; Huang, Y.; Li, Y.; Li, Y. F. Large-area flexible organic solar cells.npj Flex. Electron.2021,5, 30.
Li, Y.; Xu, G.; Cui, C.; Li, Y. F. Flexible and semitransparent organic solar cells.Adv. Energy Mater.2018,8, 1701791.
Liu, Y.; Liu, B.; Ma, C.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Liu, Y.; Meng, L.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z; Bo, Z. Recent progress in organic solar cells (Part II Device engineering).Sci. China Chem.2022,65, 1457−1497.
Li, Y. F. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.Acc. Chem. Res.2012,45, 723−733.
Xu, G.; Hu, X.; Liao, X.; Chen, Y. Bending-stability interfacial layer as dual electron transport layer for flexible organic photovoltaics.Chinese J. Polym. Sci.2021,39, 1441−1448.
Wang, T.; Sun, R.; Yang, X. R.; Wu, Y.; Wang, W.; Li, Q.; Zhang, C. F.; Min, J. A near-infrared polymer acceptor enables over 15% efficiency for all-polymer solar cells.Chinese J. Polym. Sci.2022,40, 877−888.
Yu, G.; Gao, J.; Hummelen, J.; Wudl, F.; Heeger, A. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions.Science1995,270, 1789−1791.
Yu, G.; Heeger, A. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions.J. Appl. Phys.1995,78, 4510−4515.
He, Y.; Li, Y. F. Fullerene derivative acceptors for high performance polymer solar cells.Phys. Chem. Chem. Phys.2011,13, 1970−1983.
Wei, Q.; Liu, W.; Leclerc, M.; Yuan, J.; Chen, H.; Zou, Y. A-DA'D-A non-fullerene acceptors for high-performance organic solar cells.Sci. China Chem.2020,63, 1352−1366.
Zhang, M.; Bai, Y.; Sun, C.; Xue, L.; Wang, H.; Zhang, Z. Perylene-diimide derived organic photovoltaic materials.Sci. China Chem.2022,65, 462−485.
Shi, Y.; Wang, Y.; Guo, X. Recent progress of imide-functionalized N-type polymer semiconductors.Acta Polymerica Sinica(in Chinese)2019,50, 873−889.
Lin, Y.; Wang, J.; Zhang, Z.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells.Adv. Mater.2015,27, 1170−1174.
Lin, Y.; He, Q.; Zhao, F.; Huo, L.; Mai, J.; Lu, X.; Su, C.; Li, T.; Wang, J.; Zhu, J.; Sun, Y.; Wang, C.; Zhan, X. A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency.J. Am. Chem. Soc.2016,138, 2973−2976.
Zhang, Z.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. F. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells.Angew. Chem. Int. Ed.2017,56, 13503−13507.
Zhang, Z.; Li, Y. F. Polymerized small-molecule acceptors for high-performance all-polymer solar cells.Angew. Chem. Int. Ed.2021,60, 4422−4433.
Sun, G.; Jiang, X.; Li, X. J; Meng, L.; Zhang, J.; Qin, S.; Kong, X.; Li, J.; Xin, J.; Ma, W.; Li, Y. F. High performance polymerized small molecule acceptor by synergistic optimization on pi-bridge linker and side chain.Nat. Commun.2022,13, 5267.
Wang, J.; Cui, Y.; Xu, Y.; Xian, K.; Bi, P.; Chen, Z.; Zhou, K.; Ma, L.; Zhang, T.; Yang, Y.; Zu, Y.; Yao, H.; Hao, X.; Ye, L.; Hou, J. A new polymer donor enables binary all-polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness.Adv. Mater.2022,34, 2205009.
Zhan, X.; Tan, Z. A.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li, Y.; Zhu, D.; Kippelen, B.; Marder, S. R. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells.J. Am. Chem. Soc.2007,129, 7246−7247.
Guo, X.; Watson, M. Conjugated polymers from naphthalene bisimide.Org. Lett.2008,10, 5333−5336.
Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J.; Dotz, F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting polymer for printed transistors.Nature2009,457, 679−686.
Kang, H.; Uddin, M.; Lee, C.; Kim, K.; Thanh L.; Lee, W.; Li, Y.; Wang, C.; Woo, H.; Kim, B. Determining the role of polymer molecular weight for high-performance all-polymer solar cells: its effect on polymer aggregation and phase separation.J. Am. Chem. Soc.2015,137, 2359−2365.
Zhang, Z.; Bai, Y.; Li, Y. F. Benzotriazole based 2D-conjugated polymer donors for high performance polymer solar cells.Chinese J. Polym. Sci.2021,39, 1−13.
Gao, L.; Zhang, Z.; Xue, L.; Min, J.; Zhang, J.; Wei, Z.; Li, Y. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%.Adv. Mater.2016,28, 1884−1890.
Li, Z.; Zhong, W.; Ying, L.; Liu, F.; Li, N.; Huang, F.; Cao, Y. Morphology optimizationviamolecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability.Nano Energy2019,64, 103931.
Li, W.; Roelofs, W.; Turbiez, M.; Wienk, M.; Janssen, R. Polymer solar cells with diketopyrrolopyrrole conjugated polymers as the electron donor and electron acceptor.Adv. Mater.2014,26, 3304−3309.
Sun, H.; Tang, Y.; Koh, C.; Ling, S.; Wang, R.; Yang, K.; Yu, J.; Shi, Y.; Wang, Y.; Woo, H.; Guo, X. High-performance all-polymer solar cells enabled by an N-type polymer based on a fluorinated imide-functionalized arene.Adv. Mater.2019,31, 1807220.
Zhao, R.; Liu, J.; Wang, L. Polymer acceptors containing B←N units for organic photovoltaics.Acc. Chem. Res.2020,53, 1557−1567.
Zhang, Y. Z.; Wang, N.; Wang, Y. H.; Miao, J. H.; Liu, J.; Wang, L. X. 15% Efficiency all-polymer solar cells based on a polymer acceptor containing B←N unit.Chinese J. Polym. Sci.2022,40, 989−995.
Meng, Y.; Wu, J.; Guo, X.; Su, W.; Zhu, L.; Fang, J.; Zhang, Z.; Liu, F.; Zhang, M.; Russell, T.; Li, Y. F. 11.2% Efficiency all-polymer solar cells with high open-circuit voltage.Sci. China Chem.2019,62, 845−850.
Yao, H.; Ma, L.; Yu, H.; Yu, J.; Chow, P.; Xue, W.; Zou, X.; Chen, Y.; Liang, J.; Arunagiri, L.; Gao, F.; Sun, H.; Zhang, G.; Ma, W.; Yan, H. All-polymer solar cells with over 12% efficiency and a small voltage loss enabled by a polymer acceptor based on an extended fused ring core.Adv. Energy Mater.2020,10, 2001408.
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.; Lau, T.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core.Joule2019,3, 1140−1151.
Jia, T.; Zhang, J.; Zhong, W.; Liang, Y.; Zhang, K.; Dong, S.; Ying, L.; Liu, F.; Wang, X.; Huang, F.; Cao, Y. 14.4% Efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor.Nano Energy2020,72, 104718.
Wang, W.; Wu, Q.; Sun, R.; Guo, J.; Wu, Y.; Shi, M.; Yang, W.; Li, H.; Min, J. Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells.Joule2020,4, 1070−1086.
Fan, Q.; Fu, H.; Wu, Q.; Wu, Z.; Lin, F.; Zhu, Z.; Min, J.; Woo, H.; Jen, A. Multi-selenophene-containing narrow bandgap polymer acceptors for all-polymer solar cells with over 15% efficiency and high reproducibility.Angew. Chem. Int. Ed.2021,60, 15935−15943.
Fu, H.; Fan, Q.; Gao, W.; Oh, J.; Li, Y.; Lin, F.; Qi, F.; Yang, C.; Marks, T.; Jen, A. 16.3% Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone.Sci. China Chem.2022,65, 309−317.
Fu, H.; Li, Y.; Yu, J.; Wu, Z.; Fan, Q.; Lin, F.; Woo, H.; Gao, F.; Zhu, Z.; Jen, A. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor.J. Am. Chem. Soc.2021,143, 2665−2670.
Du, J.; Hu, K.; Zhang, J.; Meng, L.; Yue, J.; Angunawela, I.; Yan, H.; Qin, S.; Kong, X.; Zhang, Z.; Guan, B.; Ade, H.; Li, Y. Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16%viatuning polymer blend morphology by molecular design.Nat. Commun.2021,12, 5264.
Li, Y.; Song, J.; Dong, Y.; Jin, H.; Xin, J.; Wang, S.; Ca, Y.; Jiang, L.; Ma, W.; Tang, Z.; Sun, Y. Polymerized small molecular acceptor with branched side chains for all polymer solar cells with efficiency over 16.7%.Adv. Mater.2022,34, 2110155.
Luo, Z.; Liu, T.; Ma, R.; Xiao, Y.; Zhan, L.; Zhang, G.; Sun, H.; Ni, F.; Chai, G.; Wang, J.; Zhong, C.; Zou, Y.; Guo, X.; Lu, X.; Chen, H.; Yan, H.; Yang, C. Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15%.Adv. Mater.2020,32, 2005942.
Peng, F.; An, K.; Zhong, W.; Li, Z.; Ying, L.; Li, N.; Huang, Z.; Zhu, C.; Fan, B.; Huang, F.; Cao, Y. A universal fluorinated polymer acceptor enables all-polymer solar cells with >15% efficiency.ACS Energy Lett.2020,5, 3702−3707.
Yu, H.; Luo, S.; Sun, R.; Angunawela, I.; Qi, Z.; Peng, Z.; Zhou, W.; Han, H.; Wei, R.; Pan, M.; Cheung, A.; Zhao, D.; Zhang, J.; Ade, H.; Min, J.; Yan, H. A difluoro-monobromo end group enables high-performance polymer acceptor and efficient all-polymer solar cells processable with green solvent under ambient condition.Adv. Funct. Mater.2021,31, 2100791.
Li, Y.; Jia, Z.; Zhang, Q.; Wu, Z.; Qin, H.; Yang, J.; Wen, S.; Woo, H.; Ma, W.; Yang, R.; Yuan, J. Toward efficient all-polymer solar cellsviahalogenation on polymer acceptors.ACS Appl. Mater. Interfaces2020,12, 33028−33038.
Wang, H.; Chen, H.; Xie, W.; Lai, H.; Zhao, T.; Zhu, Y.; Chen, L.; Ke, C.; Zheng, N.; He, F. Configurational isomers induced significant difference in all-polymer solar cells.Adv. Funct. Mater.2021,31, 2100877.
Yu, H.; Wang, Y.; Kim, H.; Wu, X.; Li, Y.; Yao, Z.; Pan, M.; Zou, X.; Zhang, J.; Chen, S.; Zhao, D.; Huang, F.; Lu, X.; Zhu, Z.; Yan, H. A vinylene-linker-based polymer acceptor featuring a coplanar and rigid molecular conformation enables high-performance all-polymer solar cells with over 17% efficiency.Adv. Mater.2022,34, 2200361.
Liu, F.; Sun, R.; Wang, C. Y.; Zhou, L.; Su, W. L.; Yue, Q. H.; Sun, S.; Liu, W. Y.; Fan, H. J.; Zhang, W. K.; Guo, Y. L.; Feng, L. H.; Zhu, X. Z. Planarized polymer acceptor featuring high electron mobility for efficient all-polymer solar cells.Chinese J. Polym. Sci.2022,40, 968−978.
Yao, H.; Bai, F.; Hu, H.; Arunagiri, L.; Zhang, J.; Chen, Y.; Yu, H.; Chen, S.; Liu, T.; Lai, J.; Zou, Y.; Ade, H.; Yan, H. Efficient all-polymer solar cells based on a new polymer acceptor achieving 10.3% power conversion efficiency.ACS Energy Lett.2019,4, 417−422.
Fan, Q.; An, Q.; Lin, Y.; Xia, Y.; Li, Q.; Zhang, M.; Su, W.; Peng, W.; Zhang, C.; Liu, F.; Hou, L.; Zhu, W.; Yu, D.; Xiao, M.; Moons, E.; Zhang, F.; Anthopoulos, T.; Inganas, O.; Wang, E. Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation.Energy Environ. Sci.2020,13, 5017−5027.
Sun, H.; Yu, H.; Shi, Y.; Yu, J.; Peng, Z.; Zhang, X.; Liu, B.; Wang, J.; Singh, R.; Lee, J.; Li, Y.; Wei, Z.; Liao, Q.; Kan, Z.; Ye, L.; Yan, H.; Gao, F.; Guo, X. A narrow-bandgap N-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells.Adv. Mater.2020,32, 2004183.
Zhou, L.; Xia, X.; Meng, L.; Zhang, J.; Lu, X.; Li, Y. Introducing electron-withdrawing linking units and thiopheneπ-bridges into polymerized small molecule acceptors for high-efficiency all-polymer solar cells.Chem. Mater.2021,33, 8212−8222.
Fan, Q.; Ma, R.; Liu, T.; Yu, J.; Xiao, Y.; Su, W.; Cai, G.; Li, Y.; Peng, W.; Guo, T.; Luo, Z.; Sun, H.; Hou, L.; Zhu, W.; Lu, X.; Gao, F.; Moons, E.; Yu, D.; Yan, H.; Wang, E. High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor.Sci. China Chem.2021,64, 1380−1388.
Liu, W.; Yuan, J.; Zhu, C.; Wei, Q.; Liang, S.; Zhang, H.; Zheng, G.; Hu, Y.; Meng, L.; Gao, F.; Li, Y.; Zou, Y. A-π-A structured non-fullerene acceptors for stable organic solar cells with efficiency over 17%.Sci. China Chem.2022,65, 1374−1382.
Benten, H.; Nishida, T.; Mori, D.; Xu, H.; Ohkita, H.; Ito, S. High-performance ternary blend all-polymer solar cells with complementary absorption bands from visible to near-infrared wavelengths.Energy Environ. Sci.2016,9, 135−140.
Su, W.; Fan, Q.; Guo, X.; Guo, B.; Li, W.; Zhang, Y.; Zhang, M.; Li, Y. Efficient ternary blend all-polymer solar cells with a polythiophene derivative as a hole-cascade material.J. Mater. Chem. A2016,4, 14752−14760.
Liu, J.; Tang, B.; Liang, Q.; Han, Y.; Xie, Z.; Liu, J. Dual Förster resonance energy transfer and morphology control to boost the power conversion efficiency of all-polymer OPVs.RSC Adv.2017,7, 13289−13298.
Li, Z.; Xu, X.; Zhang, W.; Meng, X.; Genene, Z.; Ma, W.; Mammo, W.; Yartsev, A.; Andersson, M.; Janssen, R.; Wang, E. 9.0% Power conversion efficiency from ternary all-polymer solar cells.Energy Environ. Sci.2017,10, 2212−2221.
Li, Z.; Fan, B.; He, B.; Ying, L.; Zhong, W.; Liu, F.; Huang, F.; Cao, Y. Side-chain modification of polyethylene glycol on conjugated polymers for ternary blend all-polymer solar cells with efficiency up to 9.27%.Sci. China Chem.2018,61, 427−436.
Li, Z.; Ying, L.; Xie, R.; Zhu, P.; Li, N.; Zhong, W.; Huang, F.; Cao, Y. Designing ternary blend all-polymer solar cells with an efficiency of over 10% and a fill factor of 78%.Nano Energy2018,51, 434−441.
Chen, H.; Guo, Y.; Chao, P.; Liu, L.; Chen, W.; Zhao, D.; He, F. A chlorinated polymer promoted analogue co-donors for efficient ternary all-polymer solar cells.Sci. China Chem.2019,62, 238−244.
Liu, S.; Chen, D.; Zhou, W.; Yu, Z.; Chen, L.; Liu, F.; Chen, Y. Vertical distribution to optimize active layer morphology for efficient all-polymer solar cells by J71 as a compatibilizer.Macromolecules2019,52, 4359−4369.
Zhang, Q.; Chen, Z.; Ma, W.; Xie, Z.; Liu, J.; Yu, X.; Han, Y. Efficient nonhalogenated solvent-processed ternary all-polymer solar cells with a favorable morphology enabled by two well-compatible donors.ACS Appl. Mater. Interfaces2019,11, 32200−32208.
Zhou, K.; Zhou, X.; Xu, X.; Musumeci, C.; Wang, C.; Xu, W.; Meng, X.; Ma, W.; Inganas, O.π-πStacking distance and phase separation controlled efficiency in stable all-polymer solar cells.Polymers2019,11, 1665.
Liu, X.; Zhang, C.; Pang, S.; Li, N.; Brabec, C.; Duan, C.; Huang, F.; Cao, Y. Ternary all-polymer solar cells with 8.5% power conversion efficiency and excellent thermal stability.Front. Chem.2020,8, 302.
Wang, K.; Dong, S.; Chen, X.; Zhou, P.; Zhang, K.; Huang, J.; Wang, M. Improving the all-polymer solar cell performance by adding a narrow bandgap polymer as the second donor.RSC Adv.2020,10, 38344−38350.
Xu, X.; Feng, K.; Yu, L.; Yan, H.; Li, R.; Peng, Q. Highly efficient all-polymer solar cells enabled by P-doping of the polymer donor.ACS Energy Lett.2020,5, 2434−2443.
Hu, K.; Du, J.; Sun, C.; Zhu, C.; Zhang, J.; Yao, J.; Zhang, Z.; Wan, Y.; Zhang, Z.; Meng, L.; Li, Y. F. Ternary all-polymer solar cells with two synergetic donors enable efficiency over 14.5%.Energy Fuel.2021,35, 19045−19054.
Zhang, W.; Sun, C.; Angunawela, I.; Meng, L.; Qin, S.; Zhou, L.; Li, S.; Zhuo, H.; Yang, G.; Zhang, Z.; Ade, H.; Li, Y. 16.52% Efficiency all-polymer solar cells with high tolerance of the photoactive layer thickness.Adv. Mater.2022,34, 2108749.
An, K.; Peng, F.; Zhong, W.; Deng, W.; Zhang, D.; Ying, L.; Wu, H.; Huang, F.; Cao, Y. Improving photovoltaic parameters of all-polymer solar cells through integrating two polymeric donors.Sci. China Chem.2021,64, 2010−2016.
Ma, R.; Zhou, K.; Sun, Y.; Liu, T.; Kan, Y.; Xiao, Y.; Dela, T.; Li, Y.; Zou, X.; Xing, Z.; Luo, Z.; Wong, K.; Lu, X.; Ye, L.; Yan, H.; Gao, K. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors.Matter2022,5, 725−734.
Liao, C.; Gong, Y.; Xu, X.; Yu, L.; Li, R.; Peng, Q. Cost-efficiency balanced polymer acceptors based on lowly fused dithienopyrrolo[3, 2b]benzothiadiazole for 16.04% efficiency all-polymer solar cells.Chem. Eng. J.2022,435, 134862.
Liu, T.; Yang, T.; Ma, R.; Zhan, L.; Luo, Z.; Zhang, G.; Li, Y.; Gao, K.; Xiao, Y.; Yu, J.; Zou, X.; Sun, H.; Zhang, M.; Dela, T.; Xing, Z.; Liu, H.; Li, X.; Li, G.; Huang, J.; Duan, C.; Wong, K.; Lu, X.; Guo, X.; Gao, F.; Chen, H.; Huang, F.; Li, Y.; Li, Y.; Cao, Y.; Tang, B.; Yan, H. 16% Efficiency all-polymer organic solar cells enabled by a finely tuned morphologyviathe design of ternary blend.Joule2021,5, 914−930.
Sun, R.; Wang, W.; Yu, H.; Chen, Z.; Xia, X.; Shen, H.; Guo, J.; Shi, M.; Zheng, Y.; Wu, Y.; Yang, W.; Wang, T.; Wu, Q.; Yang, Y.; Lu, X.; Xia, J.; Brabec, C.; Yan, H.; Li, Y.; Min, J. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors.Joule2021,5, 1548−1565.
Hu, K.; Du, J.; Zhu, C.; Lai, W.; Li, J.; Xin, J.; Ma, W.; Zhang, Z.; Zhang, J.; Meng, L.; Li, Y. F. Chlorinated polymerized small molecule acceptor enabling ternary all-polymer solar cells with over 16.6% efficiency.Sci. China Chem.2022,65, 954−963.
Xian, K.; Zhou, K.; Li, M.; Liu, J.; Zhang, Y.; Zhang, T.; Cui, Y.; Zhao, W.; Yang, C.; Hou, J.; Geng, Y.; Ye, L. Simultaneous optimization of efficiency, stretchability, and stability in all-polymer solar cellsviaaggregation control.Chin. J. Chem.2023,41, 159−166.
Yang, X.; Sun, R.; Wang, Y.; Chen, M.; Xia, X.; Lu, X.; Lu, G.; Min, J. Ternary all-polymer solar cells with efficiency up to 18.14% employing a two-step sequential deposition.Adv. Mater.2023,35, 2209350.
Cai, Y.; Xie, C.; Li, Q.; Liu, C.; Gao, J.; Jee, M.; Qiao, J.; Li, Y.; Song, J.; Hao, X.; Woo, H.; Tang, Z.; Zhou, Y.; Zhang, C.; Huang, H.; Sun, Y. Improved molecular ordering in a ternary blend enables all-polymer solar cells over 18% efficiency.Adv. Mater.2022, 2208165.
Yuan, J.; Gu, J.; Shi, G.; Sun, J.; Wang, H.; Ma, W. High efficiency all-polymer tandem solar cells.Sci. Rep.2016,6, 26459.
Yuan, J.; Ford, M.; Xu, Y.; Zhang, Y.; Bazan, G.; Ma, W. Improved tandem all-polymer solar cells performance by using spectrally matched subcells.Adv. Energy Mater.2018,8, 1703291.
Zhang, K.; Xia, R.; Fan, B.; Liu, X.; Wang, Z.; Dong, S.; Yip, H.; Ying, L.; Huang, F.; Cao, Y. 11.2% All-polymer tandem solar cells with simultaneously improved efficiency and stability.Adv. Mater.2018,30, 1803166.
Ma, Q.; Jia, Z.; Meng, L.; Yang, H.; Zhang, J.; Lai, W.; Guo, J.; Jiang, X.; Cui, C.; Li, Y. F. 17.87% Efficiency all-polymer tandem solar cell enabled by complementary absorbing polymer acceptors.Adv. Funct. Mater.2023,33, 2210733.
0
Views
32
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution