FOLLOWUS
a.Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b.School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
zhailei@iccas.ac.cn (L.Z.)
fanlin@iccas.ac.cn (L.F.)
Published:01 August 2024,
Published Online:17 May 2024,
Received:05 March 2024,
Revised:01 April 2024,
Accepted:07 April 2024
Scan for full text
Jia, Y.; Zhai, L.; Mo, S.; Liu, Y.; Liu, L. X.; Du, X. Y.; He, M. H.; Fan, L. Effect of low-temperature imidization on properties and aggregation structures of polyimide films with different rigidity. Chinese J. Polym. Sci. 2024, 42, 1134–1146
Yan Jia, Lei Zhai, Song Mo, et al. Effect of Low-temperature Imidization on Properties and Aggregation Structures of Polyimide Films with Different Rigidity. [J]. Chinese Journal of Polymer Science 42(8):1134-1146(2024)
Jia, Y.; Zhai, L.; Mo, S.; Liu, Y.; Liu, L. X.; Du, X. Y.; He, M. H.; Fan, L. Effect of low-temperature imidization on properties and aggregation structures of polyimide films with different rigidity. Chinese J. Polym. Sci. 2024, 42, 1134–1146 DOI: 10.1007/s10118-024-3137-1.
Yan Jia, Lei Zhai, Song Mo, et al. Effect of Low-temperature Imidization on Properties and Aggregation Structures of Polyimide Films with Different Rigidity. [J]. Chinese Journal of Polymer Science 42(8):1134-1146(2024) DOI: 10.1007/s10118-024-3137-1.
A series of polyimide films with different flexible and rigid structures were prepared by low-temperature imidization method using the catalyst of imidazole
and the effect of chemical catalysis on film properties and aggregation structures was investigated. The chemically catalyzed imidization method promotes the degree of imidization reaction and induces the orientation of molecular chains
and the tensile strength and elongation at break of films are significantly improved.
The traditional high-temperature preparation process of polyimide can cause many problems and limits the wider application in extreme conditions. An important challenge to be solved urgently is the reduction of imidization temperature. In this work
twelve kinds of polyimide films with different chain rigidity were prepared at low temperature of 200 °C
in the absence or presence of imidazole used as the catalyst. The molecular rigidity and free volume were theoretically calculated
and relationship between structure and properties were systematically studied. The results show that imidization reaction under low temperatures is significantly affected by the rigidity of molecular chains. The rigid structure of polyimide is not conducive to the low-temperature imidization
but this adverse effect can be eliminated by adding catalyst
resulting the notably increased imidization degree. The optical and thermal properties can be improved to a certain extent for the chemically catalyzed system
resulting in relatively higher heat resistance and thermal stability. While the mechanical performance could be determined by complicating factors
greatly different from polyimide films prepared by high temperature method. To investigate aggregation structures of films
the effect of chain rigidity and catalyst on the stacking or orientation of molecular chains was further elaborated. This work can contribute to the understanding of chemically catalyzed imidization that is rarely reported in the existing research
and will provide guidance for the low-temperature preparation of high-performance polyimides.
PolyimideImidizationCatalystStructure and propertiesAggregation structures
Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: syntheses, physical properties and applications.Prog. Polym. Sci.2012,37, 907−974..
Wu, Z. Y.; He, J. J.; Yang, H. X.; Yang, S. Y. Progress in aromatic polyimide films for electronic applications: preparation, structure and properties.Polymers2022,14, 1269..
Gao, M. Y.; Wang, C. O.; Jia, Y.; Zhai, L.; Mo, S.; He, M. H.; Fang, L. Research progress in anisotropic thermal conduction behavior of polyimide films.Acta Polymerica Sinica(in Chinese)2021,52, 1283−1297..
Wu, Z. Q.; Peng, Y. W.; Song, Y.; Liang, H. Y.; Gong, L.; Liu, Z. G.; Zhang, Q. Y.; Chen, Y. H. Polyimide dielectrics with cross-linked structure for high-temperature film capacitors.Mater. Today Energy2023,32, 101243..
Dong, X. D.; Wan, B. Q.; Qiu, L.; Zheng, M. S.; Gao, J. F.; Zha, J. W. Rigid/flexible molecular structure-induced polyimide aerogels with ultralow permittivity and thermal insulation properties.IET Nanodielectr.2023,6, 76−85..
Zhuang, Y. B.; Seong, J. G.; Lee, Y. M. Polyimides containing aliphatic/alicyclic segments in the main chains.Prog. Polym. Sci.2019,92, 35−88..
Liu, Y. W.; Tang, L. S.; Qu, L. J.; Liu, S. W.; Chi, Z. G.; Zhang, Y.; Xu, J. R. Synthesis and properties of high performance functional polyimides containing rigid nonplanar conjugated fluorene moieties.Chinese J. Polym. Sci.2019,37, 416−427..
Yu, H. C.; Jung, J. W.; Choi, J. Y.; Chung, C. M. Kinetic study of low-temperature imidization of poly(amic acid)s and preparation of colorless, transparent polyimide films.J. Polym. Sci., Part A: Polym. Chem.2016,54, 1593−1602..
Xu, Y. Z.; Zhang, M. R.; Pang, Y. Y.; Zheng, T. Y.; Tian, C.; Wang, Z.; Yan, J. L. Colorless polyimide copolymers derived from isomeric biphenyltetracarboxylic dianhydrides and 2,2'-bis(trifluoromethyl) benzidine.Eur. Polym. J.2023,193, 112099..
Gao, M. Y.; Zhai, L.; Mo, S.; Jia, Y.; Liu, Y.; He, M. H.; Fan, L. Thermally conductive polyimide/boron nitride composite films with improved interfacial compatibility based on modified fillers by polyimide brushes.Chinese J. Polym. Sci.2023,41, 1921−1936..
Bai, L.; Zhai, L.; He, M. H.; Wang, C. G.; Mo, S.; Fan, L. Preparation of heat-resistant poly(amide-imide) films with ultralow coefficients of thermal expansion for optoelectronic application.React. Funct. Polym.2019,141, 155−164..
Chen, W. X.; Zhou, Z. X.; Yang, T. T.; Bei, R. X.; Zhang, Y.; Liu, S. W.; Chi, Z. G.; Chen, X. D.; Xu, J. R. Synthesis and properties of highly organosoluble and low dielectric constant polyimides containing non-polar bulky triphenyl methane moiety.React. Funct. Polym.2016,108, 71−77..
Ogura, T.; Higashihara, T.; Ueda, M. Direct patterning of poly(amic acid) and low-temperature imidization using a crosslinker, a photoacid generator, and a thermobase generator.J. Polym. Sci., Part A: Polym. Chem.2009,47, 3362−3369..
Chen, Y.; Chen, X. Y.; Wang, Y.; Nie, Z.; Wang, X.; Tan, J. X.; Zhuang, Y. B.; Liu, X. Y.; Wang, X. Increasing twist rigidity to prepare polyimides with low dielectric constants and dissipation factors over a wide temperature range.Macromolecules2023,56, 9379−9388..
Sasaki, T. Low temperature curable polyimide for advanced package.J. Photopolym. Sci. Technol.2016,29, 379−382..
Jin, X. Z.; Ishii, H. A novel positive-type photosensitive polyimide based on soluble block copolyimide showing low dielectric constant with a low-temperature curing process.J. Appl. Polym. Sci.2006,100, 4240−4246..
Wu, X.; Liu, J. G.; Jiang, G. L.; Zhang, Y.; Guo, C. Y.; Zhang, Y. J.; Qi, L.; Zhang, X. M. Highly transparent preimidized semi-alicyclic polyimide varnishes with low curing temperatures and desirable processing viscosities at high solid contents: preparation and applications for LED chip passivation.J. Mater. Sci.: Mater. Electron.2019,30, 549−560..
Zhai, L.; Yang, S. Y.; Fan, L. Preparation and characterization of highly transparent and colorless semi-aromatic polyimide films derived from alicyclic dianhydride and aromatic diamines.Polymer2012,53, 3529−3539..
Lee, Y. J.; Chae, B.; Park, Y.; Jung, Y. M.; Lee, S. W. 2D infrared correlation study of the effect of base catalyst on thermal imidization of polyamic acid.J. Mol. Struct. 2020, 1217, 128383..
Yeh, Y. M.; Karapala, V. K.; Ueda, M.; Hsu, C. S. Low-temperature curable, alkaline-developable, and negative-type photosensitive polyimide with high resolution and mechanical properties based on chain extendable poly(amic acid) and photo-base generator.Polym. Adv. Technol.2020,32, 663−669..
Tseng, L. Y.; Lin, Y. C.; Kuo, C. C.; Kuo, C. C.; Ueda, M.; Chen, W. C. An ultra heat-resistant polyimide formulated with photo-base generator for alkaline-developable, negative-type photoresist.React. Funct. Polym.2020,157, 104760..
Oba, M. Effect of curing accelerators on thermal imidization of polyamic acids at low temperature.J. Polym. Sci., Part A: Polym. Chem.1996,34, 651−658..
Cao, L. D.; Fang, X. Z.; Chen, G. F. Research onN,N'-carbonyldiimidazole: a novel low-temperature imidization accelerator of polyimide.J. Polym. Sci.2023,61, 491−502..
Fan, S. N.; Yuan, L. L.; Wang, L. Z.; Jia, B.; Ma, J. X.; Yang, H. X.; Yang, S. Y. Low-temperature curable negative-tone photosensitive polyimides: structure and properties.Polymers2023,15, 973..
Li, C. Q.; Wang, Y. X.; Yin, Y. Y.; Li, Y. Y.; Li, J. H.; Sun, D. L.; Lu, J. B.; Zhang, G. P.; Sun, R. A comprehensive study of pyrazine-contained and low-temperature curable polyimide.Polymer2021,228, 123963..
Wang, H. N.; Yang, M. X.; Luo, L. B.; Huang, J. Y.; Li, K.; Wang, X.; Feng, Y.; Liu, X. Y. Catalysis and inhibition of benzimidazole units on thermal imidization of poly(amic acid)viahydrogen bonding interactions.Chinese J. Polym. Sci.2015,33, 621−632..
Lv, X. L.; Qiu, S. Y.; Huang, S.; Wang, K. Y.; Li, J. H.; He, Z. M.; Zhang, G. P.; Lu, J. B.; Sun, R. A strategy to construct low temperature curable copolyimides with pyrimidine based diamine.Polymer2022,261, 125418..
Shirai, Y.; Tokiwa,S.; Kawauchi, T.; Takeichi, T.; Sasaki, T. Influence of additives on the imidization of poly(amide acid).J. Photopolym. Sci. Technol.2012,25, 389−393..
Uchida, S.; Ishige, R.; Takeichi, T.; Ando, S. Promotion of thermal imidization of semi-aliphatic polyimide precursors by incorporation of polyethylene glycol and their modified solid structures.J. Photopolym. Sci. Technol.2017,30, 139−146..
Zhou, L. R.; Li, Y. Z.; Wang, Z. Q.; Zhang, M. Y.; Wang, X. D.; Niu, H. Q.; Wu, D. Z. Preparation of polyimide filmsviamicrowave-assisted thermal imidization.RSC Adv.2019,9, 7314−7320..
Choi, J. Y.; Jin, S. W.; Kim, D. M.; Song, I. H.; Nam, K. N.; Park, H. J.; Chung, C. M. Enhancement of the mechanical properties of polyimide film by microwave irradiation.Polymers2019,11, 477..
Matsutani, H.; Hattori, T.; Ohe, M.; Ueno, T.; Hubbard, R. L.; Fathi, Z. Low temperature curing of polyimide precursors by variable frequency microwave.J. Photopolym. Sci. Technol.2005,18, 327−332..
Park, H.; Yoo, S.; Yi, M. H.; Kim, Y. H.; Jung, S. Flexible and stable organic field-effect transistors using low-temperature solution-processed polyimide gate dielectrics.Org. Electron.2019,68, 70−75..
Zhang, Y. M.; Mushtaq, N.; Fang, X. Z.; Chen, G. F.In situFTIR analysis for the determination of imidization degree of polyimide precursors.Polymer 2022, 238, 124416..
Kreuz, J. A.; Endrey, A. L.; Gay, F. P.; Sroog, C. E. Studies of thermal cyclizations of polyamic acids and tertiary amine salts.J. Polym. Sci., Part A: Polym. Chem.1966,4, 2607−2616..
Nelson, A.; Guerra, G.; Williams, D. J.; Karasz, F. E.; Macknight, W. J. Catalytic activity of benzimidazole in the imidization of polyamic acids.J. Appl. Polym. Sci.1988,36, 243−248..
Huang, C.; Li, J. H.; Sun, D. L.; Xuan, R.; Sui, Y. Y.; Li, T. Y.; Shang, L.; Zhang, G. P.; Sun, R.; Wong, C. P. Comprehensive properties study of low-temperature imidized polyimide with curing accelerators.J. Mater. Chem. C2020,8, 14886−14894..
Fukukawa, K.; Shibasaki, Y.; Ueda, M. Efficient catalyst for low temperature solid-phase imidization of poly(amic acid).Chem. Lett.2004,33, 1156−1157..
Kim, K.; Yoo, T.; Nam, K. H.; Han, P.; Jang, W.; Han, H. Effects of nanoclay on the properties of low temperature cured polyimide system.Macromol. Res.2014,22, 1160−1164..
Ahn, T.; Choi, Y.; Jung, H. M.; Yi, M. Fully aromatic polyimide gate insulators with low temperature processability for pentacene organic thin-film transistors.Org. Electron.2009,10, 12−17..
Yoo, S.; Yoon, J. Y.; Ryu, J.; Kim, Y. H.; Ka, J. W.; Yi, M. H.; Jang, K. S. Low-temperature-annealed alumina/polyimide gate insulators for solution-processed ZnO thin-film transistors.Appl. Surf. Sci.2014,313, 382−388..
Shin, Y. S.; Chae, B.; Jung, Y. M.; Lee, S. W. Thermal imidization behaviors of 6FDA-ODA poly(amic acid) containing curing accelerators byin-situFTIR spectroscopy.Vib. Spectrosc.2020,106, 103007..
He, X. J.; Zhang, S. Y.; Zhou, Y.; Zheng, F.; Lu, Q. H. The "fluorine impact" on dielectric constant of polyimides: a molecular simulation study.Polymer2022,254, 125073..
Dinic, J.; Sharma, V. Flexibility, extensibility, and ratio of kuhn length to packing length govern the pinching dynamics, coil-stretch transition, and rheology of polymer solutions.Macromolecules2020,53, 4821−4835..
Lei, H. Y.; Qi, S. L.; Wu, D. Z. Hierarchical multiscale analysis of polyimide films by molecular dynamics simulation: investigation of thermo-mechanical properties.Polymer2019,179, 121645..
Ding, Y.; Sokolov, A. P. Comment on the dynamic bead size and Kuhn segment length in polymers: example of polystyrene.J. Polym. Sci., Part B: Polym. Phys.2004,42, 3505−3511..
Liu, H.; Zhai, L.; Bai, L.; He, M. H.; Wang, C. G.; Mo, S.; Fan, L. Synthesis and characterization of optically transparent semi-aromatic polyimide films with low fluorine content.Polymer2019,163, 106−114..
Zuo, H. T.; Chen, Y. T.; Qian, G. T.; Yao, F.; Li, H. B.; Dong, J.; Zhao, X.; Zhang, Q. H. Effect of simultaneously introduced bulky pendent group and amide unit on optical transparency and dimensional stability of polyimide film.Eur. Polym. J.2022,173, 111317..
Zuo, H. T.; Gan, F.; Dong, J.; Zhang, P.; Zhao, X.; Zhang, Q. H. Highly transparent and colorless polyimide film with low dielectric constant by introducingmeta-substituted structure and trifluoromethyl groups.Chinese J. Polym. Sci.2021,39, 455−464..
Zhang, M. R.; Miao, J.; Xu, Y. Z.; Wang, Z.; Yan, J. L. Colorless polyimides from fluorinated ladder diamines containing norbornyl benzocyclobutene segments.Macromolecules2022,55, 7992−8001..
Wang, C. O.; Zhai, L.; Gao, M. Y.; Jia, Y.; Mo, S.; He, M. H.; Fan, L. Research progress in thermal expansion behavior of polyimide films.Scientia Sinica Chimica(in Chinese)2022,52, 437−451..
Bai, L.; Zhai, L.; He, M. H.; Wang, C. O.; Mo, S.; Fan, L. Thermal expansion behavior of poly(amide-imide) films with ultrahigh tensile strength and ultralow CTE.Chinese J. Polym. Sci.2020,38, 748−758..
Wang, C. O.; Zhai, L.; Mo, S.; Liu, Y.; Gao, M. Y.; Jia, Y.; He, M. H.; Fan, L. Effect of aggregation structure on thermal expansion behavior of polyimide films with different thickness.Chinese J. Polym. Sci.2022,40, 1651−1661..
Bai, L.; Zhai, L.; He, M. H.; Wang, C. O.; Mo, S.; Fan, L. Effect of high temperature annealing on thermal expansion behavior of poly(amide-imide) films with ultralow coefficient of thermal expansion.Acta Polymerica Sinica(in Chinese)2019,50, 1305−1313..
Wakita, J.; Jin, S.; Shin, T. J.; Ree, M.; Ando, S. Analysis of molecular aggregation structures of fully aromatic and semialiphatic polyimide films with synchrotron grazing incidence wide-angle X-ray scattering.Macromolecules2010,43, 1930−1941..
0
Views
57
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution