FOLLOWUS
a.School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
b.Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
c.Insititutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
liyg@hfut.edu.cn (Y.G.L.)
chemistdrasad@gmail.com (M.A.K.)
misschen@ahu.edu.cn (M.C.)
Published:2024-09,
Published Online:07 November 2024,
Received:17 July 2024,
Revised:13 August 2024,
Accepted:13 August 2024
Scan QR Code
Li, W.; Cheng, S. J.; Li, Y. G.; Khan, M. A.; Chen, M. Ring-opening metathesis polymerization to access degradable imine-based polymers. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3220-7
Wu Li, Si-Jia Cheng, You-Gui Li, et al. Ring-Opening Metathesis Polymerization to Access Degradable Imine-Based Polymers. [J/OL]. Chinese Journal of Polymer Science, 2024,421-6.
Li, W.; Cheng, S. J.; Li, Y. G.; Khan, M. A.; Chen, M. Ring-opening metathesis polymerization to access degradable imine-based polymers. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3220-7 DOI:
Wu Li, Si-Jia Cheng, You-Gui Li, et al. Ring-Opening Metathesis Polymerization to Access Degradable Imine-Based Polymers. [J/OL]. Chinese Journal of Polymer Science, 2024,421-6. DOI: 10.1007/s10118-024-3220-7.
As a powerful synthetic tool
ruthenium-catalyzed ring-opening metathesis polymerization (ROMP) has been widely utilized to prepare diverse heteroatom-containing polymers. In this contribution
we report the synthesis of the novel imine-based polymer through the copolymerization of cyclooctene with cyclic imine comonomer
via
ROMP. Because of the efficient hydrolysis reactions of the imine group
the generated copolymer can be easily degraded under mild condition. Moreover
the generated degradable product was the telechelic polymer bearing amine group
which was highly challenged for its direct synthesis. And this telechelic polymer could also be used for the further synthesis of new polymer through post-transformation. The introduction of imine unit in this work provides a new example of the degradable polymer synthesis.
Degradable polymerRing-opening metathesis polymerizationImine-based polymerCopolymerization
Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M. D. Biodegradable polymers for food packaging: a review.Trends Food Sci. Technol.2008,19, 634−643..
Schneiderman, D. K.; Hillmyer, M. A. 50thAnniversary perspective: there is a great future in sustainable polymers.Macromolecules2017,50, 3733−3749..
Delplace, V.; Nicolas, J. Degradable vinyl polymers for biomedical applications.Nat. Chem.2015,7, 771−784..
Hillmyer, M. A.; Tolman, W. B. Aliphatic polyester block polymers: renewable, degradable, and sustainable.Acc. Chem. Res.2014,47, 2390−2396..
Semsarilar, M.; Perrier, S. ‘Green’ reversible additionfragmentation chain-transfer (RAFT) polymerization.Nat. Chem. 2010 ,2, 811−820..
Feig, V. R.; Tran, H.; Bao, Z. N. Biodegradable polymeric materials in degradable electronic devices.ACS Cent. Sci.2018,4, 337−348..
Eck, M.; Mecking, S. Closed-loop recyclable and nonpersistent polyethylene-like polyesters.Acc. Chem. Res.2024,57, 971−980..
Häußler, M.; Eck, M.; Rothauer, D.; Mecking, S. Closed-looprecycling of polyethylene-like materials.Nature2021,590, 423−427..
Saumer, A.; Mecking S. Recyclable and degradable ionic-substituted long-chain polyesters.ACS Sustainable Chem. Eng.2023,11, 12414−12422..
Tardy, A.; Nicolas, J.; Gigmes, D.; Lefay, C.; Guillaneuf, Y. Radical ring-opening polymerization: scope, limitations, and application to (bio)degradable materials.Chem. Rev.2017,117, 1319−1406..
Hill, M. R.; Kubo, T.; Goodrich, S. L.; Figg, C. A.; Sumerlin, B. S. Alternating radical ring-opening polymerization of cyclic ketene acetals: access to tunable and functional polyester copolymers.Macromolecules2018,51, 5079−5084..
Meng, X. B.; Zhou, T.; Yang, C.; Cheng, X. Y.; Wu, X. T.; Shi, C.; Du, F. S.; Li, Z. C. Thermally stable and chemically recyclable poly(ketal-ester)s regulated by floor temperature.J. Am. Chem. Soc.2024,146, 15428−15437..
Yuan, P.; Sun, Y.; Xu, X.; Luo, Y.; Hong, M. Towards high-performance sustainable polymersviaisomerization-driven irreversible ring-opening polymerization of five-membered thionolactones.Nat. Chem.2022,14, 294−303..
Hong, M.; Chen, E. Y. X. Completely recyclable biopolymers with linear and cyclic topologiesviaring-opening polymerization ofγ-butyrolactone.Nat. Chem.2016,8, 42−49..
Xu, J.; Wang, X.; Liu, J.; Feng, X.; Gnanou, Y.; Hadjichristidis, N. Ionic H-bonding organocatalysts for the ring-opening polymerization of cyclic esters and cyclic carbonates.Prog. Polym. Sci.2022,125, 101484..
Xu, J.; Hadjichristidis, N. Heteroatom-containing degradable polymers by ring-opening metathesis polymerization.Prog. Polym. Sci.2023,139, 101656..
Lefay, C.; Guillaneuf, Y. Recyclable/degradable materials via the insertion of labile/cleavable bonds using a comonomer approach.Prog. Polym. Sci.2023,147, 101764..
Varlas, S.; Keogh, R.; Xie, Y. J.; Horswell, S. L.; Foster, J. C.; O’Reilly, R. K. Polymerization-induced polymersome fusion.J. Am. Chem. Soc.2019,141, 20234−20248..
Yang, J. X.; Ren, L. X.; Li, Y. S. Ring-opening metathesis polymerization ofcis-5-norbornene-endo-2,3-dicarboxylic anhydride derivatives using the grubbs third generation catalyst.Chinese J. Polym. Sci.2017,35, 36−45..
Fu, L. B.; Zhang, T. Q.; Fu, G. Y.; Gutekunst, W. R. Relay conjugation of living metathesis polymers.J. Am. Chem. Soc.2018,140, 12181−12188..
Callmann, C. E.; Thompson, M. P.; Gianneschi, N. C.Acc. Chem. Res. 2020 ,53, 400−413..
Zheng, S. Q.; Liu, Y.; Si, G. F.; Chen, M. Covalently crosslinked networks from telechelic polycyclooctene with reinforced properties.Chin. J. Chem.2023,41, 2002−2009..
Trnka, T. M.; Grubbs, R. H. The development of L2×2RuCHR olefin metathesis catalysts: an organometallic success story.Acc. Chem. Res.2001,34, 18−29..
Ogba, O. M.; Warner, N. C.; O’Leary, D. J.; Grubbs, R. H. Recent advances in ruthenium-based olefin metathesis.Chem. Soc. Rev.2018,47, 4510−4544..
Song, K.; Kim, K.; Hong, D.; Kim, J.; Heo, C. E.; Kim, H. I.; Hong, S. H. Highly active ruthenium metathesis catalysts enabling ring-opening metathesis polymerization of cyclopentadiene at low temperatures.Nat. Commun.2019,10, 3860..
Feist, J. D.; Xia, Y. Enol ethers are effective monomers for ring-opening metathesis polymerization: synthesis of degradable and depolymerizable poly(2,3-dihydrofuran).J. Am. Chem. Soc.2020,142, 1186−1189..
Sun, H.; Ibrahim, T.; Ritacco, A.; Durkee, K. Biomass-derived degradable polymersviaalternating ring-opening metathesis polymerization of exo-oxanorbornenes and cyclic enol ethers.ACS Macro Lett.2023,12, 1642−1647..
Yang, J. H.;Xia, Y. Mechanochemical generation of acid-degradable poly(enol ether)s.Chem. Sci.2021,12, 4389−4394..
Arrington, K. J.; Murry, C. B.; Smith, E. C.; Marand, H.; Matson, J. B. Precision polyketones by ring-opening metathesis polymerization: effects of regular and irregular ketone spacing.Macromolecules2016,49, 3655−3662..
Arrington, K. J.; Waugh, J. B.; Radzinski, S. C.; Matson, J. B. Photo and biodegradable thermoplastic elastomers: combining ketone-containing polybutadiene with polylactide using ring-opening polymerization and ring-opening metathesis polymerization.Macromolecules2017,50, 4180−4187..
Alkskas, I. A.; Alhubge, A. M.; Azam, F. Synthesis, characterization and biological activity of polyketones.Chinese J. Polym. Sci.2013,31, 471−480..
Perrier, S.; Wang, X. Sacrificial synthesis.Nature2007,445, 271−272..
Hilf, S.; Kilbinger, A. F. M. Sacrificial synthesis of hydroxy-telechelic metathesis polymersviamultiblock-copolymers.Macromolecules2009,42, 1099−1106..
Debsharma, T.; Behrendt, F. N.; Laschewsky, A.; Schlaad, H. Ring-opening metathesis polymerization of biomass-derived levoglucosenol.Angew. Chem. Int. Ed.2019,58, 6718−6721..
Elling, B. R.; Su, J. K.; Xia, Y. Degradablepolyacetals/Ketals from alternating ringopening metathesis polymerization.ACS Macro Lett.2020,9, 180−184..
Boadi, F. O.; Zhang, J.; Yu, X.; Bhatia, S. R.; Sampson, N. S. Alternating ringopening metathesis polymerization provides easy access to functional and fully degradable polymers.Macromolecules2020,53, 5857−5868..
Becker, G.; Wurm, F. R. Functional biodegradable polymersviaring-opening polymerization of monomers without protective groups.Chem. Soc. Rev.2018,47, 7739−7782..
Kim, J. G. Chemical recycling of poly(bisphenol A carbonate).Polym. Chem.2020,11, 4830−4849..
McGuire, T. M.; Pérale, C.; Castaing, R.; Kociok-Köhn, G.; Buchard, A. Divergent catalytic strategies for thecis/transstereoselective ring-opening polymerization of a dual cyclic carbonate/olefin monomer.J. Am. Chem. Soc.2019,141, 13301−13305..
Haider, T.; Shyshov, O.; Suraeva, O.; Lieberwirth, I.; Delius, M.; Wurm, F. R. Longchain polyorthoesters as degradable polyethylene mimics.Macromolecules2019,52, 2411−2420..
Xiang, S.; Zhang, Q.; Zhang, G.; Jiang, W.; Wang, Y.; Zhou, H.; Li, Q.; Tang, J. Facile synthesis of block copolymers by Tandem ROMP and eROP from Esters Precursors.Biomacromolecules2014,15, 3112−3118..
Steinbach, T.; Wurm, F. R. Poly(phosphoester)s: a new platform for degradable polymers.Angew. Chem. Int. Ed.2015,54, 6098−6108..
Wang, H.; Su, L.; Li, R.; Zhang, S.; Fan, J.; Zhang, F. Polyphosphoramidates that undergo acid-triggered backbone degradation.ACS Macro Lett.2017,6, 219−223..
Shieh, P.; Nguyen, H. V. T.; Johnson, J. A. Tailored silyl ether monomers enable backbone-degradable polynorbornene-based linear, bottlebrush and star copolymers through ROMP.Nat. Chem.2019,11, 1124−1132..
Shieh, P.; Zhang, W.; Husted, K. E. L.; Kristufek, S. L.; Xiong, B.; Lundberg, D. J. Cleavable comonomers enable degradable, recyclable thermoset plastics.Nature2020,583, 542−547..
Husted, K. E. L.; Shieh, P.; Lundberg, D. J.; Kristufek, S. L.; Johnson, J. A. Molecularly designed additives for chemically deconstructable thermosets without compromised thermomechanical properties.ACS Macro Lett.2021,10, 805−810..
Johnson, A. M.; Husted, K. E. L.; Kilgallon, L. J.; Johnson, J. A. Orthogonally deconstructable and depolymerizable polysilylethersviaentropy-driven ringopening metathesis polymerization.Chem. Commun.2022,58, 8496−8499..
Huang, B.; Wei, M.; Vargo, E.; Qian, Y.; Xu, T.; Toste, F. D. Backbone-photodegradable polymers by incorporating acylsilane monomersviaring-opening metathesis polymerization.J. Am. Chem. Soc.2021,143, 17920−17925..
Chen, H. X.; Lei, Z. P.; Huang, S. F.; Jiang, H.; Yu, K.; Jin, Y. H.; Zhang, W. Poly(imine-amide) hybrid covalent adaptable networksvia in situoxidation polymerization.Chinese J. Polym. Sci.2023,41, 1577−1583..
Fishman, J. M.; Zwick, D. B.; Kruger, A. G.; Kiessling, L. L. Chemoselective, postpolymerization modification of bioactive, degradable polymers.Biomacromolecules2019,20, 1018−1027..
Shojaei, B.; Najafi, M.; Yazdanbakhsh, A.; Abtahi, M.; Zhang, C. A review on the applications of polyurea in the construction industry.Polym. Adv. Technol.2021,32, 2797−2812..
Mallick, A.; Xu, Y.; Lin, Y.; He, J.; Chan-Park, M. B.; Liu, X. W. Oxadiazabicyclooctenone as a versatile monomer for the construction of pH sensitive functional polymersviaROMP.Polym. Chem.2018,9, 372−377..
Wang, X.; Wen, Y.; Wang, Y.; Li, W.; You, W. 7-Oxa-2,3-diazanorbornene: a one-step accessible monomer for living ring-opening metathesis polymerization to produce backbone-biodegradable polymers.CCS Chem.2024, 1−13..
Si, G. F.; Chen, C. L. Cyclic–acyclic monomers metathesis polymerization for the synthesis of degradable thermosets, thermoplastics and elastomers.Nat. Synth.2022,1, 956−966..
Li, W.; Liao, D. H.; Li, Y. G.; Si, G. F.; Chen, C. L. Cyclic-acyclic monomers metathesis polymerization for the preparation of photodegradable polydicyclopentadiene and polyethylene-like materials.Sci China Chem.2024,67, 1311−1315..
Scherman, O. A.; Kim, H. M.; Grubbs, R. H. Synthesis of Well-Defined Poly((vinyl alcohol)2-alt-methylene) via Ring-Opening Metathesis Polymerization.Macromolecules2002,35, 5366−5371..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution