FOLLOWUS
a.Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
b.Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
lzzhang@csj.uestc.edu.cn (L.Z.)
jiaxi.cui@uestc.edu.cn (J.C.)
Published:2024-10,
Published Online:25 November 2024,
Received:06 September 2024,
Revised:25 September 2024,
Accepted:04 October 2024
Scan QR Code
Zhang, L.; Zhou, X.; Xiong, X.; Cui, J. Polymer fibers based on dynamic covalent chemistry. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3246-x
Luzhi Zhang, Xiaozhuang Zhou, Xinhong Xiong, et al. Polymer Fibers Based on Dynamic Covalent Chemistry. [J/OL]. Chinese Journal of Polymer Science, 2024,421-16.
Zhang, L.; Zhou, X.; Xiong, X.; Cui, J. Polymer fibers based on dynamic covalent chemistry. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-024-3246-x DOI:
Luzhi Zhang, Xiaozhuang Zhou, Xinhong Xiong, et al. Polymer Fibers Based on Dynamic Covalent Chemistry. [J/OL]. Chinese Journal of Polymer Science, 2024,421-16. DOI: 10.1007/s10118-024-3246-x.
Polymer fibers are an important class of materials throughout human history
evolving from natural fibers such as cotton and silk to modern synthetic fibers such as nylon and polyester. With the advancement of materials science
the development of new fibers is also advancing. Polymer fibers based on dynamic covalent chemistry have attracted widespread attention due to their unique reversibility and responsiveness. Dynamic covalent chemistry has shown great potential in improving the spinnability of materials
achieving green preparation of fibers
and introducing self-healing
recyclability
and intelligent response properties into fibers. In this review
we divide these fiber materials based on dynamic covalent chemistry into monocomponent fibers
composite fibers
and fiber membranes. The preparation methods
structural characteristics
functional properties
and application performance of these fibers are summarized. The application potential and challenges of fibers based on dynamic covalent chemistry are discussed
and their future development trends are prospected.
Dynamic covalent chemistryMonocomponent fibersComposite fibersFiber membranes
Ma, W.; Zhang, Y.; Pan, S.; Cheng, Y.; Shao, Z.; Xiang, H.; Chen, G.; Zhu, L.; Weng, W.; Bai, H. Zhu, M. Smart fibers for energy conversion and storage.Chem. Soc. Rev.2021,50, 7009−7061..
Zeng, K.; Shi, X.; Tang, C.; Liu, T. Peng, H. Design, fabrication and assembly considerations for electronic systems made of fibre devices.Nat. Rev. Mater.2023,8, 552−561..
Dong, Y.; Fu, S.; Yu, J.; Li, X. Ding, B. Emerging smart micro/nanofiber-based materials for next-generation wound dressings.Adv. Funct. Mater.2024,34, 2311199..
Geyer, R.; Jambeck, J.R. Law, K.L. Production, use, and fate of all plastics ever made.Sci. Adv.2017,3, e1700782..
Sun, X.; Wang, X.; Sun, F.; Tian, M.; Qu, L.; Perry, P.; Owens, H. Liu, X. Textile waste fiber regenerationviaa green chemistry approach: a molecular strategy for sustainable fashion.Adv. Mater.2021,33, 2105174..
Jönsson, C.; Wei, R.; Biundo, A.; Landberg, J.; Schwarz Bour, L.; Pezzotti, F.; Toca, A.; M. Jacques, L.; Bornscheuer, U.T. Syrén, P. O. Biocatalysis in the recycling landscape for synthetic polymers and plastics towards circular textiles.ChemSusChem2021,14, 4028−4040..
Song, X.; Ji, J.; Zhou, N.; Chen, M.; Qu, R.; Li, H.; Zhang, L.a.; Ma, S.; Ma, Z. Wei, Y. Stretchable conductive fibers: design, properties and applications.Prog. Mater. Sci.2024,144, 101288..
Liu, S.; Ma, K.; Yang, B.; Li, H. Tao, X. Textile electronics for VR/AR applications.Adv. Funct. Mater.2021,31, 2007254..
Wang, H.; Zhang, Y.; Liang, X. Zhang, Y. Smart fibers and textiles for personal health management.ACS Nano2021,15, 12497−12508..
Zhou, Y.; Xue, B.; Xie, L.; Wu, C. M. Zheng, Q. Recent advances in asymmetric structural composites for excellent electromagnetic interference shielding: a review.Chinese J. Polym. Sci.2024,42, 693−710..
Kamarulzaman, S.; Png, Z. M.; Lim, E. Q.; Lim, I. Z. S.; Li, Z.; Goh, S. S. Covalent adaptable networks from renewable resources: crosslinked polymers for a sustainable future.Chem2023,9, 2771−2816..
Zheng, N.; Xu, Y.; Zhao, Q. Xie, T. Dynamic covalent polymer networks: A molecular platform for designing functions beyond chemical recycling and self-healing.Chem. Rev.2021,121, 1716−1745..
Chen, X.; Wang, R.; Cui, C.; An, L.; Zhang, Q.; Cheng, Y. Zhang, Y. NIR-triggered dynamic exchange and intrinsicphotothermal-responsive covalent adaptable networks.Chem. Eng. J.2022,428, 131212..
Zhang, L. You, Z. Dynamic oxime-urethane bonds, a versatile unit for high performance self-healing polymers for diverse applications.Chinese J. Polym. Sci.2021,39, 1281−1291..
Lu, X.; Xie, P.; Li, X.; Li, T. Sun, J. Acid-cleavable aromatic polymers for the fabrication of closed-loop recyclable plastics with high mechanical strength and excellent chemical resistance.Angew. Chem. Int. Ed.2024,63, e202316453..
Zhang, L.; Liu, Z.; Sun, L.; Xiao, L.; Guan, Q. You, Z. Simple solvent-free strategy for synthesizing covalent adaptable networks from commodity vinyl monomers.Macromolecules2021,54, 4081−4088..
Jin, B. Yang, S. Programming liquid crystalline elastomer networks with dynamic covalent bonds.Adv. Funct. Mater.2023,33, 2304769..
Chen, F.; Pang, X. Y.; Zhang, Z. P.; Rong, M. Z. Zhang, M. Q. Thermally conductive, healable glass fiber cloth reinforced polymer composite based onβ-hydroxyester bonds crosslinked epoxy with improved heat resistance.Chinese J. Polym. Sci.2024,42, 643−654..
Xu, H.; Zhang, Y.; Wang, H. Wu, J. R. Unraveling the heterogeneity of epoxy-amine networks by introducing dynamic covalent bonds.Chinese J. Polym. Sci.2023,41, 926−932..
Zhang, M. Q. Self-healing polymeric materials: on a winding road to success.Chinese J. Polym. Sci.2022,40, 1315−1316..
Zhang, L.; Huang, H.; Sun, L.; Ma, X.; Tan, H. You, Z. Sequence-controlled dynamic covalent units enable decoupling of mechanical and self-healing performance of polymers.Sci. China Chem. DOI: 10.1007/s11426-11024-12209-11428.
Sun, L.; Huang, H.; Guan, Q.; Yang, L.; Zhang, L.; Hu, B.; Neisiany, R.E.; You, Z. Zhu, M. Cooperative chemical coupling and physical lubrication effects construct highly dynamic ionic covalent adaptable network for high-performance wearable electronics.CCS Chem.2023,5, 1096−1107..
Qiao, Z.; Yang, Z.; Liu, W.; Wang, X.; Gao, Y.; Yu, Z.; Zhu, C.; Zhao, N. Xu, J. Molecular weight switchable polyurethanes enable melt processing.Chem. Eng. J.2020,384, 123287..
Tan, H.; Zhang, L.; Ma, X.; Sun, L.; Yu, D. You, Z. Adaptable covalently cross-linked fibers.Nat. Commun.2023,14, 2218..
Tan, H.; Sun, L.; Huang, H.; Zhang, L.; Neisiany, R. E.; Ma, X. You, Z. Continuous melt spinning of adaptable covalently cross-linked self-healing ionogel fibers for multi-functional ionotronics.Adv. Mater.2024,36, 2310020..
Zhang, L.; Liu, Z.; Wu, X.; Guan, Q.; Chen, S.; Sun, L.; Guo, Y.; Wang, S.; Song, J.; Jeffries, E.M.; He, C.; Qing, F.; Bao, X. You, Z. A highly efficient self-healing elastomer with unprecedented mechanical properties.Adv. Mater.2019,31, 1901402..
Wang, S.; Wang, N.; Kai, D.; Li, B.; Wu, J.; Yeo, J. C. C.; Xu, X.; Zhu, J.; Loh, X. J.; Hadjichristidis, N. Li, Z.In-situforming dynamic covalently crosslinked nanofibers with one-pot closed-loop recyclability.Nat. Commun.2023,14, 1182..
Jin, K.; Kim, S. S.; Xu, J.; Bates, F. S. Ellison, C. J. Melt-blown cross-linked fibers from thermally reversible Diels-Alder polymer networks.ACS Macro Lett.2018,7, 1339−1345..
Qi, M.; Liu, Y.; Wang, Z.; Yuan, S.; Li, K.; Zhang, Q.; Chen, M. Wei, L. Self-healable multifunctional fibersviathermal drawing.Adv. Sci.2024,11, 2400785..
Wang, J.; Wu, B.; Wei, P.; Sun, S. Wu, P. Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh.Nat. Commun.2022,13, 4411..
Su, J.; Liu, B.; He, H.; Ma, C.; Wei, B.; Li, M.; Li, J.; Wang, F.; Sun, J.; Liu, K.; Zhang, H. Engineering high strength and super-toughness of unfolded structural proteins and their extraordinary anti-adhesion performance for abdominal hernia repair.Adv. Mater.2022,34, 2200842..
Sun, J.; He, H.; Zhao, K.; Cheng, W.; Li, Y.; Zhang, P.; Wan, S.; Liu, Y.; Wang, M.; Li, M.; Wei, Z.; Li, B.; Zhang, Y.; Li, C.; Sun, Y.; Shen, J.; Li, J.; Wang, F.; Ma, C.; Tian, Y.; Su, J.; Chen, D.; Fan, C.; Zhang, H. Liu, K. Protein fibers with self-recoverable mechanical propertiesviadynamic imine chemistry.Nat. Commun.2023,14, 5348..
Jiang, Q.; Wan, Y.; Qin, Y.; Qu, X.; Zhou, M.; Huo, S.; Wang, X.; Yu, Z. He, H. Durable and wearable self-powered temperature sensor based on self-healing thermoelectric fiber by coaxial wet spinning strategy for fire safety of firefighting clothing.Adv. Fiber Mater.2024,6, 1387−1401..
Li, Y. M.; Zhang, Z. P.; Rong, M. Z. Zhang, M. Q. Tailored modular assembly derived self-healing polythioureas with largely tunable properties covering plastics, elastomers and fibers.Nat. Commun.2022,13, 2633..
Hua, J.; Liu, C.; Fei, B. Liu, Z. Self-healable and super-tough double-network hydrogel fibers from dynamic acylhydrazone bonding and supramolecular interactions.Gels2022,8, 101..
Chu, C. K.; Joseph, A. J.; Limjoco, M. D.; Yang, J. W.; Bose, S.; Thapa, L. S.; Langer, R. Anderson, D. G. Chemical tuning of fibers drawn from extensible hyaluronic acid networks.J. Am. Chem. Soc.2020,142, 19715−19721..
Jin, K.; Banerji, A.; Kitto, D.; Bates, F. S. Ellison, C. J. Mechanically robust and recyclable cross-linked fibers from melt blown anthracene-functionalized commodity polymers.ACS Appl. Mater. Interfaces2019,11, 12863−12870..
Yan, W.; Dong, C.; Xiang, Y.; Jiang, S.; Leber, A.; Loke, G.; Xu, W.; Hou, C.; Zhou, S.; Chen, M.; Hu, R.; Shum, P. P.; Wei, L.; Jia, X.; Sorin, F.; Tao, X.; Tao, G. Thermally drawn advanced functional fibers: new frontier of flexible electronics.Mater. Today2020,35, 168−194..
Wang, W.; Lu, W.; Goodwin, A.; Wang, H.; Yin, P.; Kang, N. G.; Hong, K.; Mays, J. W. Recent advances in thermoplastic elastomers from living polymerizations: macromolecular architectures and supramolecular chemistry.Prog. Polym. Sci.2019,95, 1−31..
Mirvakili, S. M. Hunter, I. W. Artificial muscles: mechanisms, applications, and challenges.Adv. Mater.2018,30, 1704407..
Li, J.; Li, S.; Huang, J.; Khan, A.Q.; An, B.; Zhou, X.; Liu, Z. Zhu, M. Spider silk-inspired artificial fibers.Adv. Sci.2022,9, 2103965..
Ma, R.; Kang, B.; Cho, S.; Choi, M. Baik, S. Extraordinarily high conductivity of stretchable fibers of polyurethane and silver nanoflowers.ACS Nano2015,9, 10876−10886..
Pan, D.; Tian, H. Polycarbonate polyurethane elastomers synthesizedviaa solvent-free and nonisocyanate melt transesterification process.J. Appl. Polym. Sci.2015,132, 41377..
Kim, K.; Park, J.; Suh, J. H.; Kim, M.; Jeong, Y. Park, I. 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments.Sens. Actuators A2017,263, 493−500..
Ma, S. Webster, D. C. Degradable thermosets based on labile bonds or linkages: a review.Prog. Polym. Sci.2018,76, 65−110..
Hua, J. Fei, B. Super-tough polyacrylamide/iota-carrageenan double-network hydrogels strengthened by bacterial cellulose microclusters.Mater. Today: Proc.2019,16, 1497−1501..
Li, Z.; Wang, L.; Hua, J.; Jia, S.; Zhang, J. Liu, H. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using acetobacter xylinum.Carbohydr. Polym.2015,120, 115−119..
Balu, R.; Dutta, N. K.; Dutta, A. K. Choudhury, N.R. Resilin-mimetics as a smart biomaterial platform for biomedical applications.Nat. Commun.2021,12, 149..
Um, I. C.; Fang, D.; Hsiao, B. S.; Okamoto, A. Chu, B. Electro-spinning and electro-blowing of hyaluronic acid.Biomacromolecules2004,5, 1428−1436..
Ji, Y.; Ghosh, K.; Shu, X. Z.; Li, B.; Sokolov, J. C.; Prestwich, G. D.; Clark, R. A. F.; Rafailovich, M. H. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds.Biomaterials2006,27, 3782−3792..
Wolf, K. J. Kumar, S. Hyaluronic acid: incorporating the bio into the material.ACS Biomater. Sci. Eng.2019,5, 3753−3765..
Jia, Y.; Guan, Q.; Zhang, L.; Neisiany, R. E.; Yan, N.; Li, Y. You, Z. A fluorine-rich phenolic polyurethane elastomer with excellent self-healability and reprocessability and its applications for wearable electronics.Sci. China Mater.2022,65, 2553−2564..
Wang, Y.; Yang, L.; Zhang, L.; Huang, H.; Qian, B.; Gu, S.; You, Z. Solvent-free synthesis of self-healable and recyclable crosslinked polyurethane based on dynamic oxime-urethane bonds.Chinese J. Polym. Sci.2023,41, 1725−1732..
Gao, H.; Xu, J.; Liu, S.; Song, Z.; Zhou, M.; Liu, S.; Li, F.; Li, F.; Wang, X.; Wang, Z. Zhang, Q. Stretchable, self-healable integrated conductor based on mechanical reinforced graphene/polyurethane composites.J. Colloid Interface Sci.2021,597, 393−400..
Jia, Y.; Guan, Q.; Chu, C.; Zhang, L.; Neisiany, R.E.; Gu, S.; Sun, J. You, Z. A fluorine-based strong and healable elastomer with unprecedented puncture resistance for high performance flexible electronics.Sci. Bull.2024,69, 1875−1886..
Gao, Y.; Zhang, J.; Su, Y.; Wang, H.; Wang, X. X.; Huang, L. P.; Yu, M.; Ramakrishna, S.; Long, Y. Z. Recent progress and challenges in solution blow spinning.Mater. Horiz.2021,8, 426−446..
Wu, H.; Lu, Y.; Han, H.; Yan, Z. Chen, J. Solid-state electrolytes by electrospinning techniques for lithium batteries.Small2024,20, 2309801..
Si, Y.; Shi, S. Hu, J. Applications of electrospinning in human health: From detection, protection, regulation to reconstruction.Mater. Today2023,48, 101723..
Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material.Science2002,295, 1698−1702..
Adzima, B. J.; Aguirre, H. A.; Kloxin, C. J.; Scott, T. F.; Bowman, C. N. Rheological and chemical analysis of reverse gelation in a covalently cross-linked Diels-Alder polymer network.Macromolecules2008,41, 9112−9117..
Yang, K.; Grant, J. C.; Lamey, P.; Joshi-Imre, A.; Lund, B. R.; Smaldone, R. A.; Voit, W. Diels-alder reversible thermoset 3D printing: isotropic thermoset polymersviafused filament fabrication.Adv. Funct. Mater.2017,27, 1700318..
Van Damme, J. Du Prez, F. Anthracene-containing polymers toward high-end applications.Prog. Polym. Sci.2018,82, 92−119..
Van Damme, J.; van den Berg, O.; Brancart, J.; Vlaminck, L.; Huyck, C.; Van Assche, G.; Van Mele, B.; Du Prez, F. Anthracene-based thiol-ene networks with thermo-degradable and photo-reversible properties.Macromolecules2017,50, 1930−1938..
Guo, Y.; Yang, L.; Zhang, L.; Chen, S.; Sun, L.; Gu, S.; You, Z. A dynamically hybrid crosslinked elastomer for room-temperature recyclable flexible electronic devices.Adv. Funct. Mater.2021,31, 2106281..
Wang, Y.; Guan, Q.; Guo, Y.; Sun, L.; Neisiany, R.E.; Guo, X.; Huang, H.; Yang, L. You, Z. Bone-inspired stress-gaining elastomer enabled by dynamic molecular locking.Sci. Adv.2024,10, eadk5177..
Zhang, L.; Guan, Q.; Shen, A.; Neisiany, R.E.; You, Z.; Zhu, M. Supertough spontaneously self-healing polymer based on septuple dynamic bonds integrated in one chemical group.Sci. China Chem.2022,65, 363−372..
You, Y.; Rong, M.; Zhang, M. Reversibly interlocked polymer networks: design, preparation and applications.Acta Polymerica Sinica(in Chinese)2023,54, 14−36..
Xie, M.; Wang, X. R.; Wang, Z. H. Xia, H. S. Creep-resistant covalent adaptable networks with excellent self-healing and reprocessing performance via phase-locked dynamic covalent benzopyrazole-urea bonds.Chinese J. Polym. Sci. DOI: 10.1007/s10118-024-3195-4.
Zhang, L.; Chen, S. You, Z. Hybrid cross-linking to construct functional elastomers.Acc. Chem. Res.2023,56, 2907−2920..
Zhou, X.; Zheng, Y.; Zhang, H.; Yang, L.; Cui, Y.; Krishnan, B. P.; Dong, S.; Aizenberg, M.; Xiong, X.; Hu, Y.; Aizenberg, J. Cui, J. Reversibly growing crosslinked polymers with programmable sizes and properties.Nat. Commun.2023,14, 3302..
Xiong, X.; Wang, H.; Xue, L. Cui, J. Self-growing organic materials.Angew. Chem. Int. Ed.2023,62, e202306565..
Xiong, X.; Wang, H.; Yang, L. Cui, J. Photo-regulated reversible growth of inimer-containing crosslinked polymers.Acta Polymerica Sinica(in Chinese)2023,54, 1386−1394..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution