FOLLOWUS
School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
sunchangmei0535@126.com (C.M.S.)
rongjunqu@sohu.com (R.J.Q.)
Published:01 August 2024,
Published Online:25 April 2024,
Received:09 January 2024,
Revised:05 March 2024,
Accepted:11 March 2024
Scan for full text
Gong, X. J.; Zhao, Z. P.; Sun, C. M.; Zhang, Y.; Qu, R. J.; Wang, Y. Reinforcement of high impact polystyrene by aramid nanoparticle fillers prepared via an in situ bottom-up approach. Chinese J. Polym. Sci. 2024, 42, 1167–1176
Xiang-Jun Gong, Zhi-Ping Zhao, Chang-Mei Sun, et al. Reinforcement of High Impact Polystyrene by Aramid Nanoparticle Fillers Prepared
Gong, X. J.; Zhao, Z. P.; Sun, C. M.; Zhang, Y.; Qu, R. J.; Wang, Y. Reinforcement of high impact polystyrene by aramid nanoparticle fillers prepared via an in situ bottom-up approach. Chinese J. Polym. Sci. 2024, 42, 1167–1176 DOI: 10.1007/s10118-024-3124-6.
Xiang-Jun Gong, Zhi-Ping Zhao, Chang-Mei Sun, et al. Reinforcement of High Impact Polystyrene by Aramid Nanoparticle Fillers Prepared
In this paper
PPTA nanoparticles were directly synthesized in HIPS matrix by in-situ polycondensation method
which not only solved the problems of easy agglomeration and difficult dispersion of nano PPTA in polymer matrix
but also significantly improved the mechanical properties of HIPS.
In this work
aramid nanoparticles (ANPs) were prepared in dimethyl formamide (DMF) solution containing high impact polystyrene (HIPS)
via
a bottom-up approach. Transmission electron microscopy (TEM) images showed that the obtained ANPs were evenly distributed in the H
IPS matrix without any agglomeration. Chemical composition of the ANPs
i.e.
poly(
p
-phenyl-
p
-phenylenediamine) (PPTA)
was confirmed by Fourier transform infrared spectroscopy (FTIR)
X-ray photoelectron spectroscopy (XPS) and X-ray diffractometer (XRD). The ANP/HIPS composites
obtained after ethanol precipitation
were added to neat HIPS as fillers to fabricate ANP/HIPS composite sheets. The surface roughness and the glass transition temperature (
T
g
) of the sheets were characterized by atomic force microscope (AFM) and differential scanning calorimetry (DSC)
respectively. Compared with neat HIPS
the mechanical properties of the composite sheet were significantly improved
and the Young's modulus increased from 246.55 MPa to 2025.12 MPa
the tensile strength increased from 3.07 MPa to 29.76 MPa
and the toughness increased from 0.32 N/mm
2
to 3.92 N/mm
2
with an increase rate of 721%
869% and 1125%
respectively. Moreover
the thermal stability of the composites improved with the increase in ANP content.
High impact polystyrenePPTA nanoparticleReinforceMechanical property
Arif, S.; Kautek, W. Pulse laser machining and particulate separation from high impact polystyrene.Appl. Surf. Sci.2014,288, 9−14..
Alsewailem, F. D.; Al-ameri, A. M. Rubber toughened glass fibre reinforced high impact polystyrene.Mater. Sci. Technol.2023,39, 1973−1976..
Kong, Y. F.; Li, Y. C.; Hu, G. S.; Cao, N.; Ling, Y. Q.; Pan, D.; Shao, Q.; Guo, Z. H. Effects of polystyrene-b-poly(ethylene/propylene)-b-polystyrene compatibilizer on the recycled polypropylene and recycled high-impact polystyrene blends.Polym. Adv. Technol.2018,29, 2344−2351..
Jelcic, Z.; Ranogajec, F. Radiation modified high impact polystyrene.Radiat. Phys. Chem.2012,81, 1366−1369..
Katancic, Z.; Travas-Sejdic, J.; Hrnjak-Murgic, Z. Flammability and thermal properties of zeolite-filled high-impact polystyrene composites.Polym. Plast. Technol. Eng.2014,53, 1487−1493..
Mohan, A. J.; Sekhar, V. C.; Bhaskar, T.; Nampoothiri, K. M. Microbial assisted high impact polystyrene (HIPS) degradation.Bioresour. Technol.2016,213, 204−207..
Valeros, A.; Panganiban, A.; Millare, J. Fabrication and characterization of nanozeolite-modified high impact polystyrene (HIPS) membranes for nanofiltration.Key Eng. Mater.2022,931, 93−98..
Chatterjee, A.; Mishra, S. Nano-calcium carbonate (CaCO3)/Polystyrene (PS) core-shell nanoparticle: it'seffect on physical and mechanical properties of high impact polystyrene (HIPS).J. Polym. Res.2013,20, 12..
Zhou, Y. M.; Wang, L. L.; Li, X. P.; Wang, X. F.; Jiang, H. T. Effect of nano-carbon addition on color performance of polystyrene superstructure film.J. Ceram. Process. Res.2018,19, 479−482..
Kostas, V.; Baikousi, M.; Barkoula, N. M.; Giannakas, A.; Kouloumpis, A.; Avgeropoulos, A.; Gournis, D.; Karakassides, M. A. Synthesis, characterization and mechanical properties of nanocomposites based on novel carbon nanowires and polystyrene.Appl. Sci.2020,10, 5737..
Yin, J.; Retsch, M.; Thomas, E. L.; Boyce, M. C. Collective mechanical behavior of multilayer colloidal arrays of hollow nanoparticles.Langmuir2012,28, 5580−5588..
Dong, C.; Fu, R.; Sun, C.; Qu, R.; Ji, C.; Niu, Y.; Zhang, Y. Comparison studies of adsorption properties for copper ions in fuel ethanol and aqueous solution using silica-gel functionalized with 3-amino-1,2-propanediol.Fuel2018,226, 331−337..
Yang, M.; Cao, K. Q.; Sui, L.; Qi, Y.; Zhu, J.; Waas, A.; Arruda, E. M.; Kieffer, J.; Thouless, M. D.; Kotov, N. A. Dispersions of aramid nanofibers: a new nanoscale building block.ACS Nano2011,5, 6945−6954..
Dewilde, S.; Vander Hoogerstraete, T.; Dehaen, W.; Binnemans, K. Synthesis of poly-p-phenylene terephthalamide (PPTA) in ionic liquids.ACS Sustainable Chem. Eng.2018,6, 1362−1369..
Sun, Z.; Zhou, Y.; Li, W.; Chen, S.; You, S.; Ma, J. Preparation of silver-plated para-aramid fiber by employing low-temperature oxygen plasma treatment and dopamine functionalization.Coatings2019,9, 17..
Guan, Y.; Li, W.; Zhang, Y.; Shi, Z.; Tan, J.; Wang, F.; Wang, Y. Aramid nanofibers and poly(vinyl alcohol) nanocomposites for ideal combination of strength and toughnessviahydrogen bonding interactions.Compos. Sci. Technol.2017,144, 193−201..
Lee, J. U.; Park, B.; Kim, B. S.; Bae, D. R.; Lee, W. Electrophoretic deposition of aramid nanofibers on carbon fibers for highly enhanced interfacial adhesion at low content.Compos. Part A: Appl. Sci. Manuf.2016,84, 482−489..
Yang, B.; Zhang, M. Y.; Lu, Z. Q.; Luo, J. J.; Song, S. X.; Zhang, Q. Y. From poly(p-phenylene terephthalamide) broken paper: high-performance aramid nanofibers and their application in electrical insulating nanomaterials with enhanced properties.ACS Sustainable Chem. Eng.2018,6, 8954−8963..
Peng, G.; Yaoqin, W.; Changmei, S.; Chunnuan, J.; Ying, Z.; Rongjun, Q.; Ying, W. Preparation and properties of PVC-based ultrafiltration membrane reinforced byin-situsynthesized p-aramid nanoparticles.J. Membr. Sci.2022,642, 12..
Wu, Y.; Zhao, Z.; Sun, C.; Ji, C.; Zhang, Y.; Qu, R.; Wang, Y.In-situsynthesis of PPTA nanomaterials in PS matrix and their enhanced performances in PS-based nanocomposite.European Polymer Journal 2022, 179, 11..
Zhu, J.; Yang, M.; Emre, A.; Bahng, J. H.; Xu, L.; Yeom, J.; Yeom, B.; Kim, Y.; Johnson, K.; Green, P.; Kotov, N. A. Branched aramid nanofibers.Angew. Chem. Int. Ed.2017,56, 11744−11748..
Lin, J. J.; Bang, S. H.; Malakooti, M. H.; Sodano, H. A. Isolation of aramid nanofibers for high strength and toughness polymer nanocomposites.ACS Appl. Mater. Interfaces2017,9, 11167−11175..
Kong, X.; Geng, X.; Geng, S.; Qu, R.; Zhang, Y.; Sun, C.; Wang, J.; Wang, Y.; Ji, C. Antibacterial para-aramid fiber loaded within situgenerated silver nanoparticles.Surfaces and Interfaces2022,30, 10..
Chae, H. G.; Kumar, S. Rigid-rod polymeric fibers.J. Appl. Polym. Sci.2006,100, 791−802..
Teng, C.; Li, H.; Liu, J.; Gu, H.; Kong, H.; Yu, M. Effect of high molecular weight PPTA on liquid crystalline phase and spinning process of aramid fibers.Polymers2020,12, 1206..
Geng, X.; Kong, X.; Geng, S.; Qu, R.; Wang, J.; Zhang, Y.; Sun, C.; Ji, C. Conductive aramid fibers from electroless silver plating of crosslinked HPAMAM-modified PPTA: preparation and properties.ACS Omega2022,7, 17014−17023..
Saxena, A.; Prabhakaran, P. V.; Rao, V. L.; Ninan, K. N. synthesis and characterization of polyamides and poly(amide-imide)s derived from 2,2-bis(4-aminophenoxy) benzonitrile.Eur. Polym. J. 2003 ,39, 401–405..
Li, T.; Li, L.; Xu, Q.; Wang, Y.; Li, Y. Synthesis and mechanical properties of high impact polystyrene within situbulk polymerization toughened by one-pot Nd-based styrene-isoprene-butadiene terpolymer rubber.J. Appl. Polym. Sci.2016,133, 8..
Shi, Q.; Ni, L.; Zhang, Y. F.; Feng, X. S.; Chang, Q. H.; Meng, J. Q. Poly(p-phenylene terephthamide) embedded in a polysulfone as the substrate for improving compaction resistance and adhesion of a thin film composite polyamide membrane.J. Mater. Chem. A2017,5, 13610−13624..
Chen, X.; Wang, W.; Li, S.; Jiao, C. Fire safety improvement of para-aramid fiber in thermoplastic polyurethane elastomer.J. Hazard. Mater.2017,324, 789−796..
Fan, J. C.; Wang, J. L.; Shi, Z. X.; Yu, S.; Yin, J. Kevlar nanofiber-functionalized multiwalled carbon nanotubes for polymer reinforcement.Mater. Chem. Phys.2013,141, 861−868..
Zhao, Z.; Gong, X.; Sun, C.; Zhang, Y.; Qu, R.; Wang, Y. Preparation and properties of SBR/PPTA nanocompositeviain-situinterfacial polycondensation.J. Appl. Polym. Sci.2023,140, 14..
Peng, G.; Yaoqin, W.; Congcong, D.; Changmei, S.; Rongjun, Q.; Chunnuan, J.; Ying, Z.; Ying, W. Allyl and benzyl modified aramid nanofibers as an enhancement in polystyrene-based composites.Front. Chem.2020,8, 586763..
Zhang, Y.; Lu, H.; Zhang, M.; Hou, Z.; Li, S.; Wang, H.; Wu, X. E.; Zhang, Y.In situmineralizing spinning of strong and tough silk fibers for optical waveguides.ACS Nano2023,17, 5905−5912..
Li, J. Effect of multiwalled carbon nanotubes (MWNT) on the properties of high impact polystyrene (HIPS).J. Nanomater.2018,2018, 1−5..
Thuong, N. T.; Lam, N. B.; Son, P. A.; Chien, N. B.; Linh, N. P. D.; Nam, C. T. H.; Vu, N. A.; Caggiano, A. Preparation and characterization of thermally conductive high impact polystyrene/AlN composite.Int. J. Polym. Sci.2024,2024, 1−9..
Carvalho, K. C. C.; Mulinari, D. R.; Voorwald, H. J. C.; Cioffi, M. O. H. Chemical modification effect on the mechanical properties of HIPS/coconut fiber composites.BioResources2010,5, 1143−1155..
Kong, Y.; Li, Y.; Hu, G.; Lin, J.; Pan, D.; Dong, D.; Wujick, E.; Shao, Q.; Wu, M.; Zhao, J.; Guo, Z. Preparation of polystyrene-b-poly(ethylene/propylene)-b-polystyrene grafted glycidyl methacrylate and its compatibility with recycled polypropylene/recycled high impact polystyrene blends.Polymer2018,145, 232−241..
Ma, Y. X.; Shi, F. M.; Ma, J.; Wu, M. N.; Zhang, J.; Gao, C. J. Effect of PEG additive on the morphology and performance of polysulfone ultrafiltration membranes.Desalination2011,272, 51−58..
0
Views
66
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution