FOLLOWUS
a.Physics and Biophysics Education Research Laboratory (P & B-EduResLab), Biomedical Science Department, Faculty of Medical Bioengineering, ‘Grigore T. Popa’ University of Medicine and Pharmacy Iasi, M. Kogalniceanu 9-13, Iasi 700454, Romania
b.Faculty of Medical Bioengineering, ‘Grigore T. Popa’ University of Medicine and Pharmacy Iasi, M. Kogalniceanu 9-13, Iasi 700454, Romania
c.Cytoviva, Inc., 570 Devall Drive Suite 301, Auburn 36832, AL, USA
d.Integrated Center of Environmental Science Studies in the North-Eastern Development Region (CERNESIM), Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, ‘Alexandru Ioan Cuza’ University of Iasi, Blvd. Carol I no. 11, Iasi 700506, Romania
e.Research Center on Advanced Materials and Technologies (RAMTECH), Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, ‘Alexandru Ioan Cuza’ University of Iasi, Blvd. Carol I no. 11, Iasi 700506, Romania
f.Iasi Plasma Advanced Research Center (IPARC), Faculty of Physics, ‘Alexandru Ioan Cuza’ University of Iasi, Blvd. Carol I no. 11, Iasi 700506, Romania
andrei.nastuta@gmail.com
Published:01 August 2024,
Published Online:23 May 2024,
Received:07 January 2024,
Revised:23 March 2024,
Accepted:16 April 2024
Scan for full text
Nastuta, A. V.; Butnaru, M.; Cheatham, B.; Huzum, R.; Tiron, V.; Topala, I. Helium plasma effects on polymer surfaces: from plasma parameters and surface properties towards bioengineering applications. Chinese J. Polym. Sci. 2024, 42, 1156–1166
Andrei Vasile Nastuta, Maria Butnaru, Byron Cheatham, et al. Helium Plasma Effects on Polymer Surfaces: from Plasma Parameters and Surface Properties towards Bioengineering Applications. [J]. Chinese Journal of Polymer Science 42(8):1156-1166(2024)
Nastuta, A. V.; Butnaru, M.; Cheatham, B.; Huzum, R.; Tiron, V.; Topala, I. Helium plasma effects on polymer surfaces: from plasma parameters and surface properties towards bioengineering applications. Chinese J. Polym. Sci. 2024, 42, 1156–1166 DOI: 10.1007/s10118-024-3147-z.
Andrei Vasile Nastuta, Maria Butnaru, Byron Cheatham, et al. Helium Plasma Effects on Polymer Surfaces: from Plasma Parameters and Surface Properties towards Bioengineering Applications. [J]. Chinese Journal of Polymer Science 42(8):1156-1166(2024) DOI: 10.1007/s10118-024-3147-z.
A source of cold plasma
at atmospheric pressure
in helium
is used for the direct or indirect exposure of organic matter for subsequent interaction with living cells
which are studied using fluorescence or hyperspectral microscopy in order to investigate the after-plasma exposure biocompatibility of materials.
Plasma treatment is necessary to optimize the performance of biomaterial surfaces. It enhances and regulates the performance of biomaterial surfaces
creating an effective interface with the human body. Plasma treatments have the ability to modify the chemical composition and physical structure of a surface while leaving its properties unaffected. They possess the ability to modify material surfaces
eliminate contaminants
conduct investigations on cancer therapy
and facilitate wound healing. The subject of study in question involves the integration of plasma science and technology with biology and medicine. Using a helium plasma jet source
applying up to 18 kV
with an average power of 10 W
polymer foils were treated for 60 s. Plasma treatment has the ability to alter the chemical composition and physical structure of a surface while maintaining its quality. This investigation involved the application of helium plasma at atmospheric pressure to polyamide 6 and polyethylene terephthalate sheets. The inquiry involves monitoring and assessing the plasma source and polymer materials
as well as analyzing the impacts of plasma therapy. Calculating the mean power of the discharge aids in assessing the economic efficacy of the plasma source. Electric discharge in helium at atmospheric pressure has beneficial effects in technology
where it increases the surface free energy of polymer materials. In biomedicine
it is used to investigate cytotoxicity and cell survival
particularly in direct blood exposure situations that can expedite coagulation. Comprehending the specific parameters that influence the plasma source in the desired manner for the intended application is of utmost importance.
Atmopheric pressure plasmasPlasma-polymer interactionPlasma MedicinePlasma diagnosisPolymer characterization
Chandy, T.; Das, G. S.; Wilson, R. F.; Rao, G. H. Use of plasma glow for surface-engineering biomolecules to enhance bloodcompatibility of Dacron and PTFE vascular prosthesis.Biomaterials2000,21, 699−712..
Von Woedtke, T.; Schmidt, A.; Bekeschus, S.; Wende, K.; Weltmann, K. D. Plasma medicine: A field of applied redox biology.In vivo2019,33, 1011−1026..
Yin, W.; Chen, M.; Bai, J.; Xu, Y.; Wang, M.; Geng, D.; Pan, G. Recent advances in orthopedic polyetheretherketone biomaterials: Material fabrication and biofunction establishment.Smart Mater Med.2022,3, 20−36..
Hu, X.; Wang, T.; Li, F. and Mao, X. Surface modifications of biomaterials in different applied fields.RSC Adv.2023,13, 20495−20511..
Kogelschatz, U. Dielectric-barrier discharges: their history, discharge physics, and industrial applications.Plasma Chem. Plasma Proc.2003,23, 1−46..
Lejeune, M.; Lacroix, L. M.; Bretagnol, F.; Valsesia, A.; Colpo, P.; Rossi, F. Plasma-based processes for surface wettability modification.Langmuir2006,22, 3057−3061..
De Geyter, N.; Morent, R.; Leys, C. Surface characterization of plasma-modified polyethylene by contact angle experiments and ATR-FTIR spectroscopy.Surf. Interface Anal.2008,40, 608−611..
Nastuta, A.; Rusu, G.; Topala, I.; Chiper, A.; Popa, G. Surface modifications of polymer induced by atmospheric DBD plasma in different configurations.J. Optoelectron. Adv. Mater.2008,10, 2038−2042..
Brandenburg, R.; Becker, K. H.; Weltmann, K. D. Barrier discharges in science and technology since 2003: a tribute and update.Plasma Chem. Plasma Proc.2023,43, 1303−1334..
Kogelschatz, U. Atmospheric-pressure plasma technology.Plasma Phys. Control. Fusion2004,46, 63..
Fridman, G.; Friedman, G.; Gutsol, A.; Shekhter, A. B.; Vasilets, V. N.; Fridman, A. Applied plasma medicine.Plasma Proc. Polym.2008,5, 503−533..
Von Woedtke, T.; Kramer, A.; Weltmann, K. D. Plasma sterilization: what are the conditions to meet this claim.Plasma Proc. Polym.2008,5, 534−539..
Weltmann, K. D.; Kindel, E.; Brandenburg, R.; Meyer, C.; Bussiahn, R.; Wilke, C.; Von Woedtke, T. Atmospheric pressure plasma jet for medical therapy: plasma parameters and risk estimation.Contrib. Plasma Phys.2009,49, 631−640..
Nastuta, A.V.; Topala, I.; Grigoras, C.; Pohoata, V.; Popa, G. Stimulation of wound healing by helium atmospheric pressure plasma treatment.J. Phys. D: Appl. Phys. 2011 , 44(10), 105204..
Han, J. Review of major directions in non-equilibrium atmospheric plasma treatments in medical, biological, and bioengineering applications.Plasma Med.2013,3, 175−243..
Nastuta, A. V.; Pohoata, V.; Topala, I. Atmospheric pressure plasma jet—living tissue interface: Electrical, optical, and spectral characterization.J. Appl. Phys.2013,113, 183302..
Von Woedtke, T.; Reuter, S.; Masur, K.; Weltmann, K.-D. Plasmas for medicine.Phys. Rep. 2013 , 530(4), 291–320..
Novak, I.; Popelka, A.; Valentın, M.; Chodak, I.; Spırkova, M.; Toth, A.; Kleinova, A.; Sedliacik, J.; Lehocky, M.; Maronek, M. Surface behavior of polyamide 6 modified by barrier plasma in oxygen and nitrogen.Int. J. Polym. Anal. Charact.2014,19, 31−38..
Keidar, M. Plasma for cancer treatment.Plasma Sources Sci. Technol.2015,24, 033001..
Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; Fernandez Rivas, D.; Foster, J. E.; Garrick, S. C.; Gorbanev, Y.; Hamaguchi, S.; Iza, F.; Jablonowski, H.; Klimova, E.; Kolb, J.; Krcma, F.; Lukes, P.; Machala, Z.; Marinov, I.; Mariotti, D.; Mededovic Thagard, S.; Minakata, D.; Neyts, E. C.; Pawlat, J.; Petrovic, Z. Lj.; Pflieger, R.; Reuter, S.; Schram, D. C.; Schröter, S.; Shiraiwa, M.; Tarabová, B.; Tsai, P. A.; Verlet, J. R. R.;von Woedtke, T.; Wilson, K. R.; Yasui, K.; Zvereva, G. Plasma-liquid interactions: a review and roadmap.Plasma Sources Sci. Technol.2016,25, 053002..
Bekeschus, S.;Wende, K.; Hefny, M. M.; Rodder, K.; Jablonowski, H.; Schmidt, A.; Woedtke, T.;Weltmann, K. D.; Benedikt, J. Oxygen atoms are critical in rendering THP-1 leukaemia cells susceptible to cold physical plasma-induced apoptosis.Sci. Rep.2017,7, 2791..
Nastuta, A.; Topala, I.; Pohoata, V.; Mihaila, I.; Agheorghiesei, C.; Dumitrascu, N. Atmospheric pressure plasma jets in inert gases: Electrical, optical and mass spectrometry diagnosis.Rom. Rep. Phys.2017,69, 407..
Bekeschus, S.; Favia, P.; Robert, E.; Woedtke, T. White paper on plasma for medicine and hygiene: Future in plasma health sciences.Plasma Proc. Polym.2019,16, 1800033..
Cvelbar, U.; Walsh, J. L.; Cernak, M.; Vries, H. W.; Reuter, S.; Belmonte, T.; Corbella, C.; Miron, C.; Hojnik, N.; Jurov, A.; Puliyalil, H.; Gorjanc, M.; Portal, S.; Laurita, R.; Colombo, V.; Schäfer, J.; Nikiforov, A.; Modic, M.; Kylian, O.; Polak, M.; Labay, C.; Canal, J. M.; Canal, C.; Gherardi, M.; Bazaka, K.; Sonar, P.; Ostrikov, K. K.; Cameron, D.; Thomas, S.; Weltmann, K. D. White paper on the future of plasma science and technology in plastics and textiles.Plasma Proc. Polym.2019,16, 1700228..
Nastuta, A.; Popa, G. Surface oxidation and enhanced hydrophilization of polyamide fiber surface after he/ar atmospheric pressure plasma exposure.Rom. Rep. Phys.2019,71, 413..
Booth, J. P.; Mozetic, M.; Nikiforov, A.; Oehr, C. Foundations of plasma surface functionalization of polymers for industrial and biological applications.Plasma Sources Sci. Technol.2022,31, 103001..
Nastuta, A. V.; Gerling, T. Cold atmospheric pressure plasma jet operated in Ar and He: from basic plasma properties to vacuum ultraviolet, electric field and safety thresholds measurements in plasma medicine.Appl. Sci.2022,12, 644..
Brandenburg, R.; Bogaerts, A.; Bongers, W.; Fridman, A.; Fridman, G.; Locke, B.R.; Miller, V.; Reuter, S.; Schiorlin, M.; Verreycken, T.; Ostrikov, K. White paper on the future of plasma science in environment, for gas conversion and agriculture.Plasma Proc. Polym.2019,16, 1700238..
Huzum, R.; Nastuta, A.V. Helium atmospheric pressure plasma jet source treatment of white grapes juice for winemaking.Appl. Sci.2021,11, 8498..
Burducea, I.; Burducea, C.; Mereuta, P. E.; Sirbu, S. R.; Iancu, D. A.; Istrati, M. B.; Straticiuc, M.; Lungoci, C.; Stoleru, V.; Teliban, G. C.; Robu, T.; Burducea, M.; Nastuta, A. V. Helium atmospheric pressure plasma jet effects on two cultivars of triticum aestivum l.Foods2023,12, 208..
Simek, M.; Cernak, M.; Kylian, O.; Foest, R.; Hegemann, D.; Martini, R. White paper on the future of plasma science for optics and glass.Plasma Proc. Polym.2019,16, 1700250..
Weltmann, K. D.; Kolb, J.F.; Holub, M.; Uhrlandt, D.; Simek, M.; Ostrikov, K.; Hamaguchi, S.; Cvelbar, U.; Cernak, M.; Locke, B.; Fridman, A.; Favia, P.; Becker, K. The future for plasma science and technology.Plasma Proc. Polym.2019,16, 1800118..
Keidar, M.; Beilis, I., inPlasma engineering: applications from aerospace to bio and nanotechnology. Academic Press, London, 2013 , p. 424..
Lietz, A. M.; Damany, X.; Robert, E.; Pouvesle, J. M.; Kushner, M. J. Ionization wave propagation in an atmospheric pressure plasma multi-jet.Plasma Sources Sci. Technol.2019,28, 125009..
GmbH, P. Plasma processes reduce costs in automotive manufacturing.IST Internat. Surf. Technol.2020,13, 28−29..
Sim, K. B.; Baek, D.; Shin, J. H.; Shim, G. S.; Jang, S. W.; Kim, H. J.; Hwang, J. W.; Roh, J. U. Enhanced surface properties of carbon fiber reinforced plastic by epoxy modified primer with plasma for automotive applications.Polymers2020,12, 556..
Slikboer, E.; Sobota, A.; Garcia-Caurel, E.; Guaitella, O.In-situmonitoring of an organic sample with electric field determination during cold plasma jet exposure.Sci. Rep. 2020 ,10, 13580..
Nastuta, A. V.; Asandulesa, M.; Doroftei, F.; Dascalu, I. A.; Varganici, C. D.; Tiron, V.; Topala, I. Atmospheric pressure plasma jet exposure of polylactic acid surfaces for better adhesion: plasma parameters towards polymer properties.Polymers2024,16, 240..
Stalder, A. F.; Melchior, T.; Müller, M.; Sage, D.; Blu, T.; Unser, M. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops.Colloids Surf. A: Physicochem. Eng. Asp.2010,364, 72−81..
Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH image to imagej: 25 years of image analysis.Nat. Meth.2012,9, 671−675..
Verebes, G. S.; Melchiorre, M.; Garcia-Leis, A.; Ferreri, C.; Marzetti, C.; Torreggiani, A. Hyperspectral enhanced dark field microscopy for imaging blood cells.J. Biophoton.2013,6, 960−967..
Li, Q.; Zhou, M.; Liu, H.; Wang, Y.; Guo, F. Red blood cell count automation using microscopic hyperspectral imaging technology.Appl. Spectrosc.2015,69, 1372−1380..
Atkinson, J.; Biddlestone, F.; Hay, J. An investigation of glass formation and physical ageing in poly(ethylene terephthalate) by ft-ir spectroscopy.Polymer2000,41, 6965−6968..
Duchesne, C.; Kong, X.; Brisson, J.; Pezolet, M.; Prud’Homme, R. E. Molecular orientation and relaxation of poly(ethylene terephthalate) by polarization modulation infrared spectroscopy.Macromolecules2002,35, 8768−8773..
Bach, C.; Dauchy, X.; Etienne, S. Characterization of poly(ethylene terephthalate) used in commercial bottled water.IOP Conf. Ser. Mater. Sci. Eng.2009,5, 012005..
Maillo, J.; Pages, P.; Vallejo, E.; Lacorte, T.; Gacen, J. Ftir spectroscopy study of the interaction between fibre of polyamide 6 and iodine.Eur. Polym. J.2005,41, 753−759..
Zoccola, M.; Montarsolo, A.; Aluigi, A.; Varesano, A.; Vineis, C.; Tonin, C. Electrospinning of polyamide 6/modified-keratin blends.e-Polymer2007,7, 105..
Mindivan, F. Effect of crystalline form (γ) of polyamide 6/graphene nanoplatelets (PA6/GN) nanocomposites on its structural and thermal properties.Mach. Technol. Mater.2016,10, 56−59..
Necas, D.; Klapetek, P. Gwyddion: an open-source software for spm data analysis.Open Phys.2012,10, 181−188..
0
Views
31
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution